
Mocap Everyone Everywhere:
Lightweight Motion Capture With Smartwatches and a Head-Mounted Camera

(Supplementary Material)

Jiye Lee
Seoul National University

kay2353@snu.ac.kr

Hanbyul Joo
Seoul National University

hbjoo@snu.ac.kr

1. Supplementary Video
The supplementary video in the project page shows the

real-world demonstrations of our motion capture system
with two smartwatches and a head-mounted camera. The
real-world demonstrations include various scenarios includ-
ing expansive outdoor scenes, everyday motions and inter-
actions (e.g., making coffee), motions with dynamic move-
ments, and social interactions among multiple people. We
also visually demonstrate floor level changes in areas with
drastic floor level changes such as walking down the stairs.

We demonstrate comparison with previous state-of-the-
art methods that estimates motion from full-body IMU sen-
sor setups [13,24]. The video also includes several ablation
studies of our method, showing the contribution of (1) floor
level update module on non-flat scenes in module Fest (Sec.
3.3) (2) motion optimization Fopt with visual cues ϕE and
ϕT (Sec. 3.4).

2. Additional Experiments
2.1. Camera-Derived Head Poses

In the main paper, we have demonstrated the strength
of our motion estimation module Fest against baselines,
where we test with the head pose generated by available
motion capture data given that paired egocentric videos are
not available in the existing real IMU dataset. As an exten-
sion of this experiment, we further perform a similar quanti-
tative evaluation with egocentric videos using the dataset in
EgoLocate [23], where the motions in the TotalCapture [21]
dataset are paired with egocentric videos taken from vir-
tual head-mounted cameras in synthetic scenes. This addi-
tional experiment provides further evidence of the strength
of our method in a closer scenario with the practical setup,
accounting for potential noise introduced during the head
pose estimation process in monocular SLAM. To demon-
strate the reliability of the pre-processing stage of deriving
head pose from egocentric video input, which happens prior
to Fest, we use the dataset in Egolocate [23] where the mo-

tions in the TotalCapture [21] dataset are paired with ego-
centric videos taken from virtual head-mounted cameras in
synthetic scenes.

We randomly select 30 sequences in total (about 60000
frames), 15 for each scene. We follow the procedure in Sec
3.2 to obtain head poses from the egocentric videos us-
ing DROID-SLAM [20]. As the dataset does not undergo
the alignment procedure in our system beforehand (Supp.
Sec. 3), the camera poses obtained from SLAM are aligned
to world coordinates using head poses derived from the
dataset.

We first demonstrate the quality of the the camera-driven
head poses from SLAM in Table 1, where it shows minor
differences from the head poses of the ground truth motion
capture data; rotation error within 2-3 degrees and position
error within 5 centimeters. This result can support the va-
lidity of our quantitative evaluations in our main paper.

In Table 2, we compare the motion estimation outputs
with the camera-driven head poses, denoted as HC + Fest,
with the results with the methods with 6 IMU sensors,
PIP [24] and TIP [13], and our method Fest with head poses
from the dataset. Our results with camera-driven head pose
from the raw egocentric data mostly outperform the com-
peting methods which use the 6 IMU sensors, even though
our setup with an egocentric camera and fewer sensors (2
IMUs on the wrists) is much more challenging compared to
the previous methods.

We furthermore compare our results with EgoLo-
cate [23], which leverages 6 IMU sensors on the full body
for body pose estimation and an additional head-mounted
camera for global translation localization. Interestingly, de-
spite the reduced number of sensors, our results outperforms
EgoLocate. Especially for root-related position error terms
(MPJPE, Root PE) our method significantly outperforms.
Such improvement, despite of reduced number of sensors,
initially stems from the accuracy of camera pose estimation
from DROID-SLAM [20] (Table 1), and by directly incor-
porating the 6DoF head pose cues from the cameras to the
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Scene Rot. Error (deg) Pos. Error (cm) Frames

flood-ground 2.69 5.09 27026
japan-office 2.12 4.73 32421

Table 1. Rotation and position error of camera-derived head poses
compared to ground truth. (Frames are counted in 30 FPS)

Scene Method r.MPJPE Root PE MPJPE

flood-ground PIP [24] 4.76 40.35 40.81
TIP [13] 5.13 42.06 41.53

EgoLocate [23] 4.93 30.87 31.32
HC + Fest 4.76 10.52 11.44

Fest 4.64 4.21 5.12

japan-office PIP [24] 4.34 27.20 27.76
TIP [13] 4.75 30.95 31.63

EgoLocate [23] 4.43 23.35 23.72
HC + Fest 4.37 9.76 10.64

Fest 4.13 3.75 4.58

Table 2. Comparison on motion estimation results with camera-
derived head pose as input. HC indicates head poses from camera
trajectory of egocentric video I. All metrics are in cm scale.

motion estimation process, unlike EgoLocate that employs
a decoupled approach between motion estimation (IMU)
and localization (camera).

The discrepancy in the results of the root-included met-
rics between HC +Fest and Fest can be considered due to
the camera position errors, as depicted in Table 1.

2.2. Ablation Studies on Motion Estimation

Although the motion estimation module Fest does not
take the absolute position of wrists as input, our module
Fest shows comparable or improved results compared to
VR based baselines. (Table 2 of the main paper) To fur-
ther clarify such result, we also conduct an ablation study
on the motion estimation module to demonstrate the con-
tribution of components in Fest for the performance. We
first show the contribution of the multi-stage architecture
(Sec. 3.3) where the initial module, Fee, determines end-
effector positions before estimating the whole body motion.
Moreover, we highlight the contribution of data representa-
tion in input which combines normalized and global coordi-
nates. This combination of coordinates is advantageous as
normalization standardizes actions and removes unwanted
variations, while global information resolves ambiguities,
like distinguishing between standing and sitting still. This
dual-coordinate approach facilitates easier learning and en-
hances the network’s robustness in making inferences. Re-
sults in Table 3 validate the contribution of each component.

3. System Setup
3.1. Sensors

Readings IMU Sensor Signals from Smartwatches. For
demonstrations with smartwatches, we use Apple Watch

data rep multi-stage MPJPE(↓) r.MPJPE(↓) MPJVE(↓)

8.50 5.85 27.63
✓ 6.71 5.58 23.69
✓ ✓ 5.20 4.95 17.00

Table 3. Ablation studies on the components of Fest. Settings are
identical as in Tab. 1 (AMASS) in the main paper.

SE2 [1] and the SensorLog app [4] to record and access
IMU sensor data. From the recorded sensor signals, IMU
rotations are obtained from “motionQuaternion” and ac-
celerations from “motionAcceleration” of the Apple Watch
OS [2]. The sensor data are recorded in 30 FPS. Further-
more, we apply an average filter on the acceleration data
(window length: 7). As previously demonstrated [13], ap-
plying the average filter on both real and synthetic acceler-
ation data makes the data sufficiently similar to each other.
Note that our module is trained on synthetic IMU data, and
we apply our trained model on real IMU data from smart-
watches without additional fine-tuning, different from the
previous methods [24, 25].
Head-Mounted Camera. We use GoPro cameras for the
head-mounted camera. To determine the timecode (in mi-
croseconds) when the camera shutter is pressed, we use the
Open-GoPro Python SDK [3] to activate the camera shutter.

3.2. Calibration and Alignment

For coordinate alignment, the user has to follow 4 steps:
(1) put the smartwatches (IMU sensors) on the calibration
board for 3 seconds as in Fig. 1 (a); (2) wear the watches
and stand in T-pose for 3 seconds; (3) put the camera on 4
positions on the calibration board as in Fig. 1 (b); (4) stand
still for 10 seconds and swing arms up and down as in Fig. 4
for time synchronization.
IMU Sensor Calibration. In sensor data readings in real
IMU sensors (e.g., smartwatches), the IMU sensor data
should first be calibrated to be coherent with the real-world
coordinates where the gravity direction is in the negative
z-axis. Here the y-axis is defined as the user’s facing direc-
tion. We use the notations similar to TIP [13], which are as
follows:

Rj
g = Rr

gR
S
rR

j
S

ag = Rr
gR

S
r ar

(1)

Let the reference coordinate where raw IMU sensors sig-
nals are defined as r, and the global coordinate coherent
with real-world coordinates as g. Finally, as the module
Fest expects wrist joint rotations, the rotation value of IMU
sensors should be calibrated into wrist joint rotations Rj

g .
Similarly, the raw acceleration data are defined in the ref-
erence coordinate of sensors and should be converted into
coordinate g. Fig. 3 includes visualization of raw and cali-
brated signals.



Figure 1. (a) Placing IMU sensors for IMU sensor calibration. The
negative z-axis of the sensors are aligned to the gravity direction,
and the y-axis is set as a “facing direction”. (b) Placing cameras
on axes Ix and Iy for camera coordinate alignment.

Figure 2. (a) Camera poses Ci in arbitrary SLAM coordinates. (b)
Camera poses Ci in real-world coordinates after alignment opti-
mization.

RS
r indicate rotations of raw IMU sensor data defined

in the initial reference frame. At the first calibration stage,
the user is asked to align the smartwatches to the specified
coordinate g (Fig. 1 (a)) so that in the moment RS

r = Rg
r .

From Rg
r we can derive Rr

g by applying (Rg
r)

−1. Follow-
ing previous methods [13, 25], the sensors are placed still
for 3 seconds and the signal is averaged. Provided that the
axes are aligned, it is not necessary for the two IMU sensors
to be in the exact same position as IMU sensor signals are
translation invariant.

The next calibration step is to obtain wrist rotations Rj
g

from RS
g . This is done by applying Rj

S , or RS
gR

j
S . To ob-

tain Rj
S , the user wears smartwatches on both wrists and

stands in T-pose, facing the y-axis in g.

RjT
ST

= (RST
r )−1Rg

rR
jT
g (2)

The subscript T indicates the values obtained during T-pose
calibration. Assuming that the IMU sensors are fixed in the
wrist position during capture, we can assume that Rj

S is
fixed, or RjT

ST
= Rj

S . As the joint rotations in T-pose, or
RjT

g , is known, RjT
ST

can be derived by obtaining raw sensor
recordings during T-pose calibration RST

r . Similar to the
first step, the user stands in T-pose for 3 seconds.

Note that unlike previous methods [13, 25] we do not
consider acceleration bias (mostly, gravity) as the Apple

Figure 3. Visualization of the raw and calibrated IMU signals de-
fined in reference coordinate r and user-specified global coordi-
nate g.

Figure 4. (a) Swinging arms for time synchronization. (b) IMU
acceleration signals during sync. The vertical line indicates when
the hand is up.

Watch OS offers unbiased acceleration values.
Camera Alignment to IMU Coordinates. For align-
ing camera coordinates to IMU coordinates, previous ap-
proaches [11, 23] leverage joint positions derived from
IMU-based mocap modules for alignment. Different from
such methods, our alignment method does not rely on IMU-
derived body joint positions. At the start of recording, the
user is instructed to put the camera in 4 positions defined on
the x and y axis, denoted as Ix, Iy , of the global coordinate
g defined in IMU calibration. (Fig. 1 (b)).

The corresponding camera positions in arbitrary coordi-
nates from SLAM are denoted as Ci, i ∈ {1, ..., 4}. Align-
ment is done by finding the transformation matrix T c

I which
maps

−−−−→
C1, C2 to y-axis Iy and

−−−−→
C3, C4 to x-axis Ix. As the

real-world data could be noisy and a closed-form solution
may not exist, we formulate an optimization problem to find
the optimal transformation matrix.

The scale of arbitrary coordinates of SLAM is set by
measuring the distances in the calibration board in Fig. 1.
The initial height h0 is given by measuring the distance
between the board and the floor the user stands on during
the alignment procedure. The camera poses before and af-
ter alignment are in Fig. 2.
Head Poses From Camera Trajectory. The camera cen-
ter C may not be necessarily the same as the head joint
location, we compute the fixed transformation T cam

head to
transform the camera pose into the head pose. The trans-
lation component fo T cam

head is computed by approximating



the camera location in a surface point of SMPL mesh. As
the camera may not be on the surface of the human head as
in Fig. 4, an offset is added to the surface point. Similar to
the T-pose calibration step in IMU sensor calibration (Supp.
Sec. 3.2), the rotation component of T cam

head, or Rcam
head, is ob-

tained by asking the user to stand still (as in T-pose) for 10
seconds.
Synchronization. The initial time synchronization between
IMU sensors and the head-mounted camera is set by the
timecodes generated from the sensors. (For the camera, the
timecode is recorded when the shutter is activated) How-
ever, empirically we found there were minor errors in the
timecode and therefore should be adjusted. For the adjust-
ment, the user is asked to stand still and swing their arms up
and down, as in Fig. 4 (a). When the hands move up to the
highest position close to the camera (Fig. 4 (a)), the IMU
sensor signals show a specific peak as in Fig. 4 (b). The
time synchronization is done by aligning the two. To adjust
between the camera and the IMU sensors, the frame where
the hands are closest to the camera is selected. We empiri-
cally found out that swinging is more robust than clapping,
as in some cases the force transmitted to the wrist sensor
during clapping can cause sensor peaks to spike.

3.3. Capture Setup for Ablations

For quantitative evaluation of ablative baselines (Sec.
4.4) XSens MVN Link [5] was used to capture ground-truth
data. As an IMU-based method, however, XSens also suf-
fers from root drift issues [11]. We ignore these factors dur-
ing the evaluation by considering errors in XY aligned space
(in evaluating floor update algorithm) or capturing motion
with relatively small root translations (in evaluating Fopt).

For the ablation of floor plane update, the height changes
from 0m to −4.21m. For ablations on visual-cue based mo-
tion optimization Fopt in egocentric cases, we capture 3 sce-
narios (making coffee, using coffee machine, taking snacks
off the shelf; total 2289 frames) and the right hand was de-
tected as the visual cue ϕE .

4. Implementation Details
4.1. Synthesizing IMU Sensor Data

For synthesizing IMU sensor data from motion capture
datasets we follow the protocol in [13, 24, 25]. Rotations
are obtained from joint rotations derived by solving forward
kinematics. Accelerations are synthesized based on the fol-
lowing equation:

ajt =
pj
t−n + pj

t+n − 2pj
t

(n∆t)2
j ∈ {left, right} (3)

We set n = 4, which is reported [25] to synthesize sensor
signals closest to the real sensors.

4.2. Floor Level Update

Implementation Details. The threshold λ for contact de-
tection is set to 0.5. For projecting pf

tm to the pointcloud W,
set points {w} whose distance to pf

tm are less than 0.15m
are searched. As the pointcloud W is not pre-scanned but is
obtained from SLAM, the number of points may be sparse
in floor regions. If the number N of points in {w} is below
10, the height of pf

tm is set as ft. To prevent undesired up-
dates, the floor level is not updated when (1) the floor level
change is less than 0.1m, (2) both feet have been in contact
from t − 5 to t − 1, and are still in contact for t to t + 5,
(3) the time interval between current and previous update is
less than 25 frames.

4.3. Motion Estimation

Models and Training. For the transformer encoders in both
submodules Fend and Fbody the number of heads is set
to 10, and the number of layers to 4. For Fend, the in-
put is projected into embeddings of dimensions 1280. For
Fbody , mid-representations {xmid

τ } and {xτ} are projected
into embeddings of dimension 640 each and are concate-
nated and fed into the Transformer encoder. The features
generated by the Transformer encoder are converted to the
final output of each module via a 2-layer MLP, which con-
verts the features into 256 dimensions in the first layer and
to the dimensions of the final output in the second layer. The
length N of temporal sliding windows fed into the modules
is set to 40. The two modules are trained end-to-end, with
AdamW optimizer [15]. The learning rate is automatically
set with DAdaptation [7]. We use Nvidia RTX 3090Ti GPU
for training. PyTorch [19] and FairMotion library [10] were
used for implementation.
Datasets. The datasets used for baseline comparison are
stated in the main paper. For training the model used in
real-world demonstrations in the supplementary video, we
use a subset of AMASS (CMU [22], HDM05 [18], BML-
Movi [8], KIT [17], HUMAN4D [6]) and a subset of
Lafan1 [12] dataset for training.

4.4. Motion Optimization

Models and Training. The encoder and decoder of the
autoencoder structure to build motion manifolds (Sec 3.4)
which consist of 3 layers of 1D temporal-convolutions with
a kernel width of 25 and stride 2. The channel dimension of
each output feature is set to 256. The autoencoder is trained
with the AdamW optimizer [15] and the learning rate is au-
tomatically set with DAdaptation [7].For optimizing the la-
tent vector within the manifold, Adam optimizer [14] was
used, and the learning rate was set to 0.0007 for single-
person egocentric visual cues ϕE , 0.001 for multi-person
visual cues ϕT . As in the motion estimation module, we use
PyTorch [19] and FairMotion library [10] for implementa-



tion. Nvidia RTX 3090Ti GPU was used for training and
optimization. The datasets used for training the autoencoder
are identical to the datasets used in training Fest (Supp.
Sec. 4.3).
Generating Visual Cues. MediaPipe library [16] was used
for detecting 2D keypoints in single-person egocentric vi-
sual cues ϕE . The missing keypoints are tracked using
the optical flow of the detected keypoints. State-of-the-art
monocular 3D pose estimation method 4DHumans [9] was
used for generating multi-person visual cues ϕT .
Reconstruction Loss. The encoder E and decoder E−1

are trained based on reconstruction loss Lrecon = ||X −
E−1(E (X)) ||, where:

Lrecon = Lcontact + Lroot + Lrot + Lpos. (4)

Lcontact, Lroot, Lrot, and Lpos are the L1 losses of foot
contact labels, root translation and rotation, joint rotations
in 6D representations [26], and global joint positions ob-
tained by forward kinematics operation.
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