
SemCity: Semantic Scene Generation with Triplane Diffusion
- Supplementary Material -

In this supplementary material, we report additional con-
tents for an in-depth understanding of our method: back-
grounds for diffusion models (Sec. A), implementation de-
tails of our method (Sec. B), and our additional experimen-
tal results (Sec. C). Specifically, we visualize our generation
results across scene generation, scene inpainting, scene out-
painting, and semantic scene completion refinement. We
further demonstrate RGB images generated from our scene
samples.

A. Backgrounds of Diffusion Models

Diffusion models synthesize data (e.g., images) by gradu-
ally transforming a random noise distribution into a data
distribution through a reverse Markov process. This pro-
cess involves two main phases: the forward process (i.e.,
diffusion process) and the reverse process (i.e., denoising
process).

A.1. Forward Process

In the forward process, a given data x0 ∼ p(x0) is gradually
corrupted by adding noise over a series of steps. This pro-
cess transforms the original data distribution into a Gaus-
sian distribution. The forward process is modeled as a
Markov chain, where each step adds a small amount of
noise, making it easy to compute and invert:

q(xt|xt−1) = N (
√
1− βtxt−1, βtI). (S1)

Here, xt is a noised data at step t, βt is a variance schedule,
and N denotes the Gaussian distribution. t is defined within
1 ≤ t ≤ T with the maximum denoising steps T .

The t-th noised data xt is sampled via iteration of the
forward process q(xt|xt−1) in Eq. S1; however, xt can be
simply obtained as a closed form with αt = 1 − βt and
ᾱt = Πt

s=0αs:

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I), (S2)

xt =
√
ᾱtx0 + ϵ

√
(1− ᾱt), (S3)

where ϵ ∼ N (0, I), and 1− ᾱt is a variance of the noise for
an arbitrary timestep t.

A.2. Reverse Process

The reverse process iteratively removes noises from the
sample to generate a coherent structure resembling the orig-
inal data x0 distribution. Each denoising step can be ex-
pressed as a reverse Markov chain:

pϕ(xt−1|xt) = N (µϕ(xt, t),Σϕ(xt, t)), (S4)

where µϕ and Σϕ are the mean and covariance of the re-
verse process at step t, parameterized by learnable param-
eters ϕ. In particular, [4] proposes that a model ϵϕ(xt, t)
can simply be trained to predict the noise ϵ instead of di-
rectly parameterizing the mean µϕ(xt, t). They assume the
covariance Σϕ(xt, t) is constant. Thus, we can define a dif-
fusion loss as:

L = Et∼U(1,T ),ϵ∼N (0,I)||ϵ− ϵϕ(xt, t)||2, (S5)

where U is the discrete uniform distribution. [1] suggests
the x0-parameterization where a model xϕ predicts the in-
put data x0 directly, rather than predicting the added noise
ϵ. The diffusion loss for the x0-parameterization is defined
as:

L = Et∼U(1,T )||x0 − xϕ(xt, t)||2. (S6)

This loss function is the basis of our triplane diffusion loss
in Eq. 2 of the main paper.

B. Implementation Details
B.1. Training Setting

Triplane Autoencoder. As described in Sec. 3.1 of the
main paper, our triplane autoencoder consists of two mod-
ules: the triplane encoder fθ and the implicit MLP de-
coder gθ. We configure the encoder fθ with six 3D con-
volutional layers with a skip connection and design our
MLP decoder gθ to be light to mitigate the training bur-
den. The MLP decoder consists of four 128-dimensional
fully-connected layers with a skip connection. Follow-
ing [8], the positional encoding PE(p) at coordinates
p is used as sinusoidal functions defined as: PE(p) =[
sin(20πp), cos(20πp), . . . , sin(25πp), cos(25πp)

]
.

Triplane Diffusion Model. Based on the observation [12]
where the sample diversity depends on L1 or L2 diffusion
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loss, the norm factor p of the triplane diffusion loss (Eq. 2
of the main paper) is set to 1 or 2. For more diversity of
generation results, we set p = 2 (i.e., L2) in scene gener-
ation, scene inpainting, and scene outpainting. In contrast,
we use p = 1 (i.e., L1) for semantic scene completion re-
finement following [13]. The diffusion settings (e.g., the
variance schedule βt) are used as DDPM [4].

B.2. Generation Setting

Scene Outpainting. Our model extrapolates a given scene,
resulting in a larger scale scene as depicted in Fig. S4,
Fig. S5 and Fig. 6 of the main paper. As shown in Fig. S4,
our model is capable of generating a variety of extended
scenes. To enhance its effectiveness, we have incorporated
an interactive outpainting system [6] that allows users to
guide the scene generation process. This interaction is a
demonstration of the model’s flexibility and responsiveness
to user preferences. Users may keep the original outpainting
or regenerate it to correspond more closely to their visual
objectives. This capability enables users to create finely-
tuned urban scenes on a city-scale, as shown in Fig. S5 and
Fig. 6 of the main paper.
Semantic Scene to RGB Image. We exploit Control-
Net [16] to generate RGB images from our semantic scenes.
ControlNet supports various conditional inputs (e.g., seg-
mentation or depth maps) and can be easily integrated with
other fine-tuned models (e.g., Dreambooth [11], Textual in-
version [3], and Lora [5]). We manipulate a semantic map
rendered from our generated scenes and generate an RGB
image through the following process. An initial RGB image
is obtained by conditioning semantic and depth maps ren-
dered from our generated scene. Afterward, we generate a
final image from the initial RGB map with conditional seg-
mentation and depth maps obtained from ControlNet pre-
processors [9, 17, 18]. For our experiments, we employ
the diffusion model [10] weights1 fine-tuned on urban street
views to generate images analogous to driving scenes.

C. Additional Experimental Results
In this section, we visualize additional generated scenes of
our method in the various applications, including 1) scene
generation, 2) scene inpainting, 3) scene outpainting, 4) se-
mantic scene completion refinement, and 5) semantic scene
to RGB image. For visualizations, colors are used as below.
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1https://civitai.com/models/119169/urban-streetview

C.1. Triplane Visualization

Figure S1. Triplane visualization during our generation pro-
cess. We visualize triplanes (right) and their corresponding scenes
(left) according to diffusion steps. We observe distinct denois-
ing patterns where our diffusion model initially constructs low-
frequency structures (e.g., roads) in the early stages of denoising.
In contrast, high-frequency details (e.g., edges) are progressively
refined in the later stages of the process. This phenomenon can
also be found in image diffusion models [4]; we expect this prop-
erty to be exploited for elastic scene editing in future work.



C.2. Scene Generation

Figure S2. Scene generation results of our method. The generated scenes demonstrate various road shapes, including L, T, Y, straight,
and crossroads, which show that our method generates diverse samples.



C.3. Semantic Scene Completion Refinement
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Figure S3. Results of semantic scene completion refinement of our method. The parentheses report the SSC metrics as (IoU, mIoU).
Our method refines the results of state-of-the-art SSC methods. The MonoScene [2] and OccDepth [7] methods use a RGB input. The
SSA-SC [15] and SCPNet [14] employ LiDAR point clouds as an input.



C.4. Scene Outpainting
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Figure S4. Scene outpainting results of our method. We visualize various outpainting results generated from two scenes. The outpainted
scene is expanded from the given size of 256× 256× 32 to 512× 512× 32 without any guidance. The red boxes mean an original scene
for outpainting. Our method produces various outpainted scenes from an identical original scene.



C.5. City-level Generation

Figure S5. City-scale outpainted scene. The first column displays a city-scale scene, showcasing an expansive urban landscape. The
city-scale scene is expanded from the original size of 256× 256× 32 to 1792× 2816× 32. The second column figures provide close-up
views of specific areas within the city-scale scene. The red box means an original scene for outpainting.



C.6. Scene Inpainting
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Figure S6. Scene inpainting results of our method. The red boxes refer to inpainting regions.

C.7. Semantic Scene to RGB Image

Generated scene Generated image Generated scene Generated image

Figure S7. RGB images generated from our generated scenes. ControlNet [16] is utilized to generate images from our generated scenes.
In the last figure illustrating a snowy scene, we added a text prompt ‘snow’.
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[9] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 44(3), 2022. 2

[10] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022. 2

[11] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22500–
22510, 2023. 2

[12] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee,
Jonathan Ho, Tim Salimans, David Fleet, and Mohammad
Norouzi. Palette: Image-to-image diffusion models. In
ACM SIGGRAPH 2022 Conference Proceedings, pages 1–
10, 2022. 1

[13] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sal-
imans, David J Fleet, and Mohammad Norouzi. Image
super-resolution via iterative refinement. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 45(4):4713–
4726, 2022. 2

[14] Zhaoyang Xia, Youquan Liu, Xin Li, Xinge Zhu, Yuexin
Ma, Yikang Li, Yuenan Hou, and Yu Qiao. Scpnet: Se-
mantic scene completion on point cloud. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17642–17651, 2023. 4

[15] Xuemeng Yang, Hao Zou, Xin Kong, Tianxin Huang, Yong
Liu, Wanlong Li, Feng Wen, and Hongbo Zhang. Seman-
tic segmentation-assisted scene completion for lidar point
clouds. In 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 3555–3562. IEEE,
2021. 4

[16] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836–3847, 2023. 2, 7

[17] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 2

[18] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. International
Journal of Computer Vision, 127(3):302–321, 2019. 2

https://github.com/lkwq007/stablediffusion-infinity
https://github.com/lkwq007/stablediffusion-infinity

	. Backgrounds of Diffusion Models
	. Forward Process
	. Reverse Process

	. Implementation Details
	. Training Setting
	. Generation Setting

	. Additional Experimental Results
	. Triplane Visualization
	. Scene Generation
	. Semantic Scene Completion Refinement
	. Scene Outpainting
	. City-level Generation
	. Scene Inpainting
	. Semantic Scene to RGB Image


