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In this supplementary material, we offer a more compre-
hensive assessment of our proposed CMD-SE. In Section 1,
we further investigate the multi-level decoding mechanism
and the effect of different descriptions on our model. In
Section 2, we further analyze the generalizability of our
CMD-SE by comparing it with the previous state-of-the-art
zero-shot HOI detector. In Section 3, we provide additional
details regarding the implementation of the proposed ap-
proach. In Section 4 we present more qualitative results on
images in the wild. In Section 5 we discuss the limitations
and potential future directions of our work.

1. Ablation Study
In this section, we empirically investigate the sensitivity of
the proposed method to the multi-level decoding mecha-
nism and the effect of different description on the open-
vocabulary SWIG-HOI dataset. Specifically, besides the
four aspects of CMD-SE we have discussed in section 4.3,
we further ablate on (1) utilizing different levels of feature
maps to decode HOIs and (2) the importance of different
descriptions.
The multi-level decoding mechanism. As shown in Ta-
ble 1, utilizing the feature maps from level {6, 9, 12} brings
a 0.73% mAP gain on all categories compared with utilizing
the feature maps from level {9, 12}. It is worth noting that
the performance on HOIs with large distances improves by
a large margin (4.69%), showing the effectiveness of utiliz-
ing multi-level feature maps to model HOIs with different
distances. Furthermore, we empirically find that utilizing
more levels of feature maps leads to marginally inferior per-
formance. This shows that utilizing more levels of feature
maps might lead to a more challenging optimization during
the training process. Therefore, in the main paper, we use
the feature maps from level {6, 9, 12} by default to report
all experimental results unless otherwise specified.
The importance of different descriptions. (1) HOI de-
scription: besides using the annotated verb/object defini-
tions in main paper (line 1 of Table 6) as HOI description,
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we try 2 different prompts for querying the LLM: “Knowl-
edge retrieve for HOI”, and “Describe the visual appear-
ance of HOI” (lines 2&3 of Table 2). We observe that
“Knowledge Retrieval” often includes redundant informa-
tion lacking relevance to visual cues (e.g., ”a common recre-
ational activity”), “Visual Appearance” also performs worse
compared to ours, suggesting that the underlying states of
body parts offer a more broadly applicable comprehension
of HOI concepts. (2) Bodypart description: To better under-
stand the importance of body parts description, we experi-
ment with a subset of body parts (last row), yielding inferior
results compared to using all body parts. This indicates the
visual cues from multiple body parts provide complemen-
tary and valuable information for open-vocabulary HOID.

2. Comparative Analysis of Open Vocabulary
and Zero-shot HOI Detectors

We observe from Table 2 of the main text that all open vo-
cabulary methods perform worse than zero-shot methods
on the HICO-DET dataset. However, this comparison is
not entirely fair because the zero-shot methods depend on
a DETR architecture and often use pretrained weights from
COCO [2]1. To enable a controlled comparison in deal-
ing with unseen objects in a fair manner, we conduct the
following experiment to analyze the generalizability of our
model and the previous state-of-the-art zero-shot HOI de-
tector [4]. Specifically, we train both methods on the de-
fault setting of the HICO-DET dataset and evaluate their
performance on a subset of the SWIG-HOI test set. We
randomly select a few classes from the SWIG-HOI test set
for evaluation. As shown in Table 3, our proposed method
outperforms HOICLIP [4] by 5.62% and 4.79% mAP when
selecting 20 or 50 classes, respectively. It is worth noting
that interactions in SWIG-HOI may involve arbitrary object
categories that are not present in the COCO dataset, which
is closer to an open-world scenario. Previous methods that
rely on a pretrained DETR [1] exhibit inferior performance

1The COCO pretraining implicitly encompasses all object categories
present in HICO-DET.
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L Small Large Seen Unseen Full

{9, 12} 15.26 13.30 16.79 10.05 15.09
{6, 9, 12} 15.20 17.35 16.79 10.70 15.26
{3, 6, 9, 12} 15.13 16.93 16.73 10.14 15.07

Table 1. Ablation on the multi-level decoding mechanism. L: the
levels of feature maps used for decoding. Small: HOIs with small
distances (≤0.33). Large: HOIs with large distances (≥0.67).

Prompts Unseen

None 9.32
Knowledge Retrieval 9.85[+0.53]
Visual Appearance 10.27[+0.95]
Body Part 10.70[+1.38]
Subset of Body Part 10.25[+0.93]

Table 2. Importance of different descriptions.

when directly applied to SWIG-HOI. In contrast, our pro-
posed CMD-SE, which does not rely on a pretrained detec-
tor, demonstrates the greater potential for detecting HOIs in
open-world scenarios.

3. Implementation Details

In this section, we present a comprehensive description of
the implementation details of our model. Our model is built
upon the pretrained CLIP and all its parameters are frozen
during training. Following the previous work [5], we em-
ploy the ViT-B/16 version as our visual encoder to ensure a
fair comparison, which processes a 224 × 224 × 3 image
as input. During training, we first apply a few data augmen-
tation techniques, including RandomHorizontalFlip, Ran-
domCrop, and ColorJitter. Then, the augmented images are
resized to the CLIP input resolution, i.e., 224 × 224. The
visual encoder consists of a total of 12 layers, and we ex-
tract feature maps from levels {6, 9, 12}, forwarding them
to the HOI decoder. The number of layers of the HOI de-
coder is set to 4. We employ 10 and 25 HOI queries on
the SWIG-HOI and HICO-DET datasets, respectively. We
set the cost weights λb, λiou, λcls and λd to 5, 2, 5, and 5
during training. We use focal loss [3] for interaction classi-
fication to counter the imbalance between positive and neg-
ative examples. We set γ to 2 during inference. We intro-
duce 8 prefix tokens and 2 conjunctive tokens to connect the
words of human actions and objects following [5]. We set
the learning rate as 10−4 and use the Adam optimizer with
decoupled weight decay regularization. We train our model
for 80 epochs with a batch size of 128 on 2 A100 GPUs.

Method #(Classes) mAP

HOICLIP [4] 20 7.41
CMD-SE (Ours) 20 13.03

HOICLIP [4] 50 4.39
CMD-SE (Ours) 50 9.18

Table 3. Experiments on applying methods trained on HICO-DET
to SWIG-HOI dataset. #(Classes): the number of classes we select
on the SWIG-HOI test set.

4. Qualitative Examples in The Wild
To provide further evidence of the enhanced performance
and generalization capabilities of our model, we present ad-
ditional qualitative results on data in the wild.
Human Body Parts. As depicted in Figure 1a and 1b, our
model effectively captures contextual features from image
regions containing human body parts, particularly those in-
volved in interactive actions (e.g., legs in “kicking person,”
mouth in “drinking drinking-glass”). It accurately predicts
interaction categories based on these extracted features.
Different Distances. Our model demonstrates strong per-
formance across varying distances and scales of human-
object interactions, as demonstrated in Figure 1c and 1d.
Whether dealing with small-scale interactions like “talking
telephone” or large-scale interactions like “photographing
camera,” our model consistently achieves favorable results.
Different art styles. To assess the model’s generalizabil-
ity to different art styles, we conduct tests using images
of video game characters. Figure 1e and 1f showcase
the model’s correct predictions of interactions even when
presented with out-of-domain images. This demonstrates
its commendable performance for images with diverse art
styles.
Multiple HOIs. We also evaluate the model’s ability to de-
tect multiple HOIs in a single image. As shown in Figure 1g
and 1h, our model correctly identifies two different interac-
tions through separate prediction heads. Although the at-
tention patterns of these heads may appear similar, closer
inspection reveals that each head actually pays more atten-
tion to the objects related to its predictions.

5. Limitations
Currently, our method is limited in the following two key as-
pects. Firstly, while we utilize GPT to generate fine-grained
descriptions of human body parts for each HOI, our model’s
ability to distinguish between different HOIs is still con-
strained by the embedding space of the CLIP text encoder.
Secondly, our current approach does not rely on pretrained
detectors, which is a strength but may also be a weakness
given recent advances in open-vocabulary object detection.
In the future, we will explore ways to utilize more advanced



(a) kicking person. (b) drinking drinking-glass. (c) talking telephone. (d) photographing camera.

(e) shooting shotgun. (f) riding horse. (g) reading book. (h) smoking cigarette.

Figure 1. Qualitative results of our method on wild data.

text encoders and integrate high-quality open-vocabulary
object detectors into our model. We believe that these im-
provements will lead to even better performance and make
our method more practical for real-world applications.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 1

[2] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Com-
puter Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13,
pages 740–755. Springer, 2014. 1

[3] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Proceed-
ings of the IEEE international conference on computer vision,
pages 2980–2988, 2017. 2

[4] Shan Ning, Longtian Qiu, Yongfei Liu, and Xuming He.
Hoiclip: Efficient knowledge transfer for hoi detection with
vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 23507–23517, 2023. 1, 2

[5] Suchen Wang, Yueqi Duan, Henghui Ding, Yap-Peng Tan,
Kim-Hui Yap, and Junsong Yuan. Learning transferable
human-object interaction detectors with natural language su-
pervision. In CVPR, 2022. 2


	. Ablation Study
	. Comparative Analysis of Open Vocabulary and Zero-shot HOI Detectors
	. Implementation Details
	. Qualitative Examples in The Wild
	. Limitations

