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Figure S.1. Additional application: Text-to-GART.

More implementation details are included in our code re-
lease at https://www.cis.upenn.edu/˜leijh/
projects/gart/. This document includes more results
of our representation from the main paper, including an ad-
ditional application – Text-to-3D generation in Sec. S.1 and
more results on dogs in Sec. S.2. And provides more exper-
iments and discussions in Sec. S.3.

S.1. Application: Text-to-GART Generation

GART is a general representation for articulated subjects

and is not restricted to reconstruction from real monocular
video. By changing the rendering L1 loss and SSIM loss
in Eq.17 in the main paper to an SDS loss [6], we further
demo an application – Text-to-GART. The input is a text
describing the content the user aims to generate, and the
output is an optimized GART representing this subject. The
optimization loss becomes:

L = LSDS + Lreg, (1)

where LSDS is computed via forwarding a fine-tuned Stable-
Diffusion [7] model MVDream [9]. For more details on
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Figure S.2. Additional comparison on in-the-wild dog videos.

Data Method PSNR SSIM LPIPS

National Dog
Show

InsAva-Dog 16.13 0.759 0.318
GART 17.86 0.825 0.238

Adobe Stock InsAva-Dog 20.62 0.834 0.227
GART 24.50 0.921 0.114

Table S.1. Quantitative evaluation of view synthesis on ITW dogs.

LSDS, please see Stable-Diffusion [7] and DreamGaus-
sian [10]. Since there are no real poses estimated from video
frames, we randomly sample some reasonable SMPL [2]
template poses from AMASS [3] to augment GART during
distillation. The generation results are shown in Fig. S.1.
We observe that thanks to the efficiency of GART , the com-
putation bottleneck of the generation is mainly in the 2D
diffusion forwarding, and the typical generation time is
around 10 minutes per subject on a single A40 GPU.

S.2. More Results on Dogs

GART can robustly reconstruct dogs from challenging in-
the-wild videos. We further compare it to a NeRF-based
approach [1, 4, 5], which we call InstantAvatar-Dog. We
adapt the implementation of InstantAvatar [1] by changing
the template model to D-SMAL [8] and applying it to the
dog videos. Qualitative comparison from Fig S.2 shows
that InstantAvatar-Dog produces ghostly artifacts similar to
InstantAvatar’s results on human bodies. These artifacts
may be the result of inaccurate pose estimation and insuf-
ficient viewpoints in the training data, and they are more
pronounced on the dogs due to the challenging in-the-wild
sequences and the less accurate dog pose estimation [8]. An
additional quantitative comparison is presented in Tab. S.1.
GART has higher performance across all view synthesis
metrics.

Figure S.3. Additional comparison on the effect of the number of
latent bones.

PSNR SSIM LPIPS*

UBC 25.65 0.9337 81.88
Sum1 25.71 0.9347 76.93

ZJU 32.22 0.9773 29.21
Sum1 32.24 0.9774 29.11

People 28.36 0.9701 46.49
Sum1 28.37 0.9701 46.03

Table S.2. Normalize the skinning weight to sum up to 1 on dif-
ferent datasets. The results reported in the main paper are colored
yellow.

Figure S.4. More ablation of the smoothness regularization.

S.3. More Experiments and Discussions
S.3.1. Latent Bones

The main results in the paper use 32 latent bones for the
UBC dataset. As shown in Fig. S.3, we further ablate the
number of latent bones used for modeling challenging long
cloths. Another limitation of our current latent bone method
is the generalization to novel poses. Since the training poses
are too limited, the latent bones tend to overfit the training
poses and produce reasonable results only on similar poses.
It’s an open question of how to generalize this method to
novel pose animation.

S.3.2. Skinning Weights

The learnable skinning weight in the main paper is not nor-
malized to have a summation of 1 per Gaussian. We further
verify this setup in Tab. S.2 and observe a slight but consis-
tent improvement in the performance of our method.

S.3.3. More Ablation

We show more results for the ablation of voxel grid distilled
skinning weights and the KNN regularization in Fig. S.4.
And test the voxel grid resolution’s effect on the perfor-
mance in Tab. S.3.
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