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1. Switch Policy001

1.1. Theoretical Analysis002

We consider the following situation: when the agent’s cur-003
rent observation contains an object of the same category as004
in the goal image, a simple Exploration-Exploitation (EE)005
Policy will directly judge this observation, which can be006
divided into the following four cases: TP, TN, FP, FN, de-007
scribed in Tab. 1. In this case, the judgment of the current008
observation can be formulated as:009

pee(TP) = p(TP|d, t), (1)010
011

pee(FP) = p(FP|d, t), (2)012

where p(∗|d, t) represents the TP or FP probability at Eu-013
clidean distance of d and selected threshold of t. ee refers014
to the Exploration-Exploitation policy.015

On the contrary, our proposed Exploration-Verification-016
Exploitation (EVE) unfolds this decision-making problem017
over time, turning it into a sequential decision problem. In018
Tab. 1, we add a new item in row 5 to illustrate this pro-019
cess. For example, if the Policy cannot determine whether020
the current observation is the goal or not, it will give the021
Uncertain prediction. We set the agent forward step size to022
da, then the maximum Verification steps is lmax = ⌊d/da⌋.023
Hence, the final success rate of the EVE strategy is:024

peve(TP) =
lmax∑
i=1

i−1∏
j=1

p(U|dc(j), t(dc(j)))

× p(TP|dc(i), t(dc(i))),

(3)025

026

peve(FP) =
lmax∑
i=1

i−1∏
j=1

p(U|dc(j), t(dc(j)))

× p(FP|dc(i), t(dc(i))),

(4)027

where dc(i) = d− da × i represents the distance at current028
verification step. In our proposed EVE policy, the threshold029
t is affected by the Euclidean distance of dc(i), which will030
change according to the current verification steps.031

We use the formulas in Eq. (3) and Eq. (4) to represent 032
the probabilities of TP and FP obtained by the agent using 033
the EVE Policy after going through a maximum of lmax 034
verification steps when the Euclidean distance from the ob- 035

ject is d.
i−1∏
j=1

p(U|dc(j), t(dc(j))) represents the possibility 036

of verifying i− 1 steps, which can be treated as the weight 037
of p(∗|dc(i), t(dc(i))), where ∗ denotes TP or FP. To am- 038
plify the probability of TP and suppress FP in our EVE pol- 039
icy, the agent should make judgments when the distance is 040
closer, and refrain from making judgments when the dis- 041
tance is farther empirically. 042

For simplicity, we consider an extreme situation where 043
p(U|dc(i), t(dc(i))) is equal to 1 when the Euclidean dis- 044
tance between the agent and the potential target is not min- 045
imal. p(∗|d, t) satisfies the following: 046∑

p(∗|d, t) = 1, ∗ = U, TP, FP, TN, FN. (5) 047

Therefore, p(TP|dc(i), t(dc(i))) or p(FP|dc(i), t(dc(i))) is 048
equal to 0. In other words, the agent only makes judgments 049
when it is closest to the potential target. In such a situation, 050
Eq. (3) and Eq. (4) can be simplified as follows: 051

p∗eve(TP) = p(TP|dc(lmax), t(dc(lmax))), (6) 052
053

p∗eve(FP) = p(FP|dc(lmax), t(dc(lmax))). (7) 054

Compared with the formulas in Eq. (1) and Eq. (2), we 055
can conclude that in such a extreme situation, EVE Policy 056
changes the decision-making location of the agent from d 057
to dc, that is, it allows the agent to make judgments from 058
the closest position instead of the original one. Intuitively, 059
we can consider this as being helpful for the agent to make 060
correct decisions. From a quantitative analysis perspec- 061
tive, at the Hard difficulty level with Thresh = 100, which 062
represents the number of matched keypoints, pee(TP) = 063
p(TP|d = [4, inf), t = 100) = 0.090 in Tab. 2. How- 064
ever, for the EVE Policy, it is as if the difficulty level has 065
been switched from Hard to Easy before making a decision, 066
at which point p∗eve(TP) = p(TP|d = [0, 2), t = 100) = 067
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Event Description in Context

TP (True Positive) The policy correctly predicts that the visible object is the goal.
TN (True Negative) The policy correctly predicts that the visible object is not the goal.
FP (False Positive) The policy incorrectly predicts that the visible object is the goal.
FN (False Negative) The policy incorrectly predicts that the visible object is not the goal.
Uncertain (U) The policy cannot precisely determine whether the visible object is or not the goal.

Table 1. Events and corresponding descriptions.

Easy Medium Hard

Thresh TP TN FN FP TP TN FN FP TP TN FN FP

40 0.741 0.853 0.259 0.147 0.569 0.848 0.431 0.152 0.526 0.835 0.474 0.165
60 0.651 0.963 0.349 0.037 0.569 0.964 0.431 0.036 0.380 0.961 0.620 0.039
80 0.610 0.977 0.390 0.023 0.500 0.982 0.500 0.018 0.314 0.974 0.686 0.026

100 0.582 0.981 0.418 0.019 0.451 0.986 0.549 0.014 0.090 0.992 0.910 0.008

Table 2. The probabilities of TP, TN, FP, and FN under various difficulty levels (according to the Euclidean distance between the agent and
potential target) and selected thresholds (the number of matched keypoints).

0.582. Such a significant improvement will be extremely068
beneficial for the agent to make accurate and robust deci-069
sions.070

1.2. Implementation Details071

Based on this idea, we design the Goal Map Selection func-072
tion fswitch, depicted in Fig. 1. We analyze the data re-073
garding Instance Re-identification in Tab. 2 and find that074
when the thresh is set to 100, the TN remains consistently075
high, ranging from 0.981 to 0.992. This indicates that in076
the majority of cases, the agent does not mistakenly iden-077
tify non-existent targets in its field of view. Furthermore,078
when the threshold is set to 60, regardless of the difficulty079
level, the TN values still remain relatively high, ranging080
from 0.961 to 0.964. This indicates that, in cases where the081
thresh is greater than 60, the probability of the agent mak-082
ing FP errors is extremely low. When thresh is set to 60,083
the probability of TP increases from 0.380 (hard) to 0.651084
(easy). This suggests that there is a significant possibility,085
under the threshold of 60, for the agent to successfully iden-086
tify the correct target as it gradually approaches it, without087
misidentifying the target. Based on the analysis of the data,088
we design fswitch that maps the matched keypoints and the089
Euclidean distance between the agent and potential targets090
to the selection signal of the Switch Policy. The function091
fswitch is represented as Fig. 1.092

When the distance is large, only the Verification and Ex-093
ploration strategies exist. This is due to the fact that when094
the thresh is set to 100, the TP rate is merely 0.090. This095
suggests that it is challenging for the agent to make accurate096
judgments about potential targets at a considerable distance.097
Consequently, we instruct the agent to refrain from making098
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Figure 1. Goal Map Selection fswitch.

judgments under such circumstances, and we consistently 099
apply the Verification strategy. 100

In medium difficulty scenarios, when the thresh is 80, 101
the TN rate remains high at 0.982 while the TP rate 102
reaches 0.500. Therefore, we set the boundary between 103
the Exploitation and Verification strategies from (2, 60) to 104
(4, 100). Given the rapid decline of the TN rate below 60 105
(dropping from 0.963 to 0.853 in easy condition), we des- 106
ignate values below 60 as the boundary for the Exploration 107
strategy. Since an agent encounters numerous potential tar- 108
gets in a single episode, the occurrence of FP errors is un- 109
acceptable. Hence, in our prior strategy determination, we 110
deemed the decline of TN from 0.963 to 0.853 as intolera- 111
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Figure 2. Overview of our Instance Re-identification dataset. The first row indicates the goal image, while the second and third row denotes
the positive samples or negative samples respectively.

ble.112

2. Exploration-Exploitation Policy Implemen-113

tation Details114

In this section, we introduce the implementation details of115
our baseline method, i.e., Exploration-Exploitation Policy116
for Instance Image Goal Navigation. While keeping the In-117
stance Classification and Semantic Mapping modules un-118
changed, we assess the semantic segmentation of the cur-119
rent observation. If objects of the same category as those120
in the target image exist, we carry out local feature match-121
ing. The quantity of matched key points is then compared122
with a fixed threshold. If the comparison is successful, the123
Exploitation policy is executed directly. Otherwise, the Ex-124
ploration policy continues.125

Under the premise of constructing an Instance Re-126
identification dataset, we set a threshold of 100 through127
the analysis of the confusion matrix for instance re-128
identification. We do not choose the threshold based on the129
highest F1 score because the cost of False Positive (FP) er-130
rors is substantial, leading to a steep decline in the success131

rate. At the same time, successful prediction of positive 132
samples can implicitly depend on the exploration strategy. 133

3. Local Policy Implementation Details 134

For a given goal map Mg(t), the inputs to the Local Pol- 135
icy are its first two channels, representing the distribution 136
of obstacles on the local map mo(t) and the target distri- 137
bution on the map mg(t). Subsequently, the Fast Marching 138
Method (FMM) 1 is utilized to construct the shortest dis- 139
tance field obtained from the flood of the goal map, and the 140
local minimum is selected around the agent. Action is then 141
generated based on the angle between this local minimum 142
and the agent. 143

In order to enhance the robustness of the agent during 144
path planning, we design the collision map mc(t) and the 145
visited map mv(t). Prior to constructing the shortest dis- 146
tance field, we merge the collision map mc(t) and the vis- 147
ited map mv(t) with the local obstacle map mo(t). The 148
construction of the collision map mc(t) is based on colli- 149

1https://github.com/scikit-fmm/scikit-fmm
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sion detection. Collision detection involves inspecting the150
distance an agent has traveled when a forward action is exe-151
cuted, comparing it with the expected distance. If the actual152
distance is less than the expected one, a collision is assumed153
to have occurred. If a collision occurs, the corresponding154
area in front of the agent on the collision map mc(t) is set155
to 1, indicating that the area is untraversable. The construc-156
tion of the visited map mv(t) involves setting the path that157
the agent has traversed prior to timestep t to 1. The colli-158
sion map sets untraversable area in the front region of the159
agent when a collision is detected, while the visited map160
designates the traversed path as traversable area, which are161
merged to the current obstacle map mo(t). The processed162
obstacle map mo(t) can handle out-of-view collision and163
memorize previous traversed area. Therefore, under highly164
complicated indoor environment, it can plan path robustly165
and efficiently.166

4. Instance Re-identification Dataset167

We create Instance Re-identification Dataset based on the168
HM3D-SEM [2] train/val split. Anchor images are defined169
as goal images that depict specific object instances, which170
do not share the same parameters as agent’s camera. Specif-171
ically, anchor images are 512 × 512 RGB images and are172
captured from different viewpoints. Viewpoints represent173
different viewing angles of an object instance at the differ-174
ent height. In contrast, the goal images can be captured175
from different height, look-at-angle and field-of-view.176

For each anchor goal image, we sample 10 positive and177
negative images using the agent’s camera. Positive images178
are defined as observations where the target instance is vis-179
ible to the oracle, and the area rate of the visible object in-180
stance should not fall below 0.01. Negative images are ran-181
domly sampled from the same scene and do not contain the182
specified goal instance. We have divided the dataset into183
three distinct difficulty levels: easy, medium, hard. Easy184
level is defined as a range of Euclidean distances from the185
object instance to the current viewpoint of [0, 2)m, whereas186
medium level ranges from [2, 4)m and hard level encom-187
passes [4,+∞)m. We give a brief overview of our dataset188
in Fig. 2.189

5. Episode Analysis.190

We provide three testing episodes of performing Instance191
ImageGoal Navigation task in the Habitat [1] simulator.192
Each video frame is divided into three columns. The first193
column shows the goal image, where the blue text indicates194
the current policy being executed (Exploration, Verification,195
Exploitation). The second column represents the current196
observation, while the third column displays the Goal Map197
Mg(t). The three videos demonstrate the process in which198
our agent explores the environment, locates potential tar-199

gets, verifies if these potential targets are the objects in the 200
goal image, and makes decisions accordingly. The agent ac- 201
tively switches between Exploration, Verification, and Ex- 202
ploitation policies. After verifying several distracting ob- 203
jects, the agent successfully locates and navigates the target 204
correctly. 205
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