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Appendix

Overview. In the appendix, we provide additional details for
the main paper:

* More descriptions of method in Sec. A.

* More experimental details and results in Sec. B.

* More discussions of VIT-LENS in Sec. C.

A. More Details of VIT-LENS Method
A.1. ModEmbed for Modality Encoder

As describe in Sec. 3.1, we adopt a specific tokenization
scheme to transform raw input signals into token embeddings
for each modality. In this section, we introduce the modality
embedding modules for 3D point cloud, depth, audio, tactile
and EEG in our work.

3D point cloud. For 3D point cloud embedding, we utilize
the approach introduced in [45]. We initially sample g center
points from the input point cloud p using farthest point sam-
pling (FPS). Subsequently, we utilize the k-nearest neighbors
(kNN) algorithm to select k nearest neighbor points for each
center point, forming g local patches {pi}?:l- To extract
the structural patterns and spatial coordinates of these local
patches, we normalize them by subtracting their center coor-
dinates. Further, we employ a mini-PointNet [36] to project
these sub-clouds into point embeddings. Additionally, we
incorporate learnable positional embeddings on top of these
embeddings to model position information.

Audio. For audio embedding, following [19], we firstly
convert the input audio waveform into a sequence of log
Mel filterbank (fbank) features, forming a spectrogram with
time and frequency dimensions. This spectrogram is then
partitioned into a sequence of P x P patches with a stride
of S in both time and frequency dimensions. Each P x P
patch is flattened and projected into a 1D embedding of
size d using a linear projection layer. Subsequently, we
introduce learnable positional embeddings to capture the
spatial structure of the spectrogram. These embeddings are
utilized as inputs for subsequent processing by the model.
Depth. For depth embedding, we firstly follow [17, 18] to
convert depth maps into disparity for scale normalization.
We then utilize patch embedding similar to the mechanism
in ViT. This involves partitioning the disparity into P x P
patches with a stride of S (S = P) to handle the single-
channel input. Each P x P patch undergoes flattening and
projection into a 1D embedding of size d using a linear
projection layer. To capture positional information, we incor-
porate learnable positional embeddings. These embeddings
serve as inputs for the subsequent module.

Tactile. For tactile embedding, since we use RGB data from
GelSight [23], we apply the same patch embedding as in ViT.
Specifically, we partition the RGB input into P x P patches
with a stride of S (S = P). Each P x P patch undergoes
flattening and projection into a 1D embedding of size d using
a linear projection layer. We integrate learnable positional
embeddings for position information. These embeddings are
forwarded as inputs for the subsequent module.

EEG. For EEG embedding, we use the C' channel EEG with
T timestamps. We then group every ¢ time steps into a token
and transformed it into a d-dimensional embedding. We
further add positional embeddings on top and use the yielded
embeddings as inputs for the subsequent module.

A.2. More Details for Lens

Reducing computational comprexity with Iter-CS-Attn.
As is shown in Fig.3 in the main paper, the cross attention
mechanism generates an output with equal length of the la-
tent query input. In practice, we typically configure the Lens
with less parameters (fewer attention layers) compared to
the pretrained-ViT component. Consequently, the majority
of computational overhead is incurred during the forward
pass of the ViT layers. Consider the input latent query length
n and the modality embedding length m. For modalities
with lengthy input (m > n), utilizing the Iter-CS-Attn Lens
reduces the computational cost of pretrained-ViT to O(n?),
compared to encoding embeddings of the same length as the
input, which has a complexity of O(m?). This strategy sig-
nificantly lowers the computational overhead for processing
lengthy inputs.

A.3. Utilizing Pretrained ViT Layers

The core of enhancing omni-modal representation with VIT-
LENS is to leverage the rich knowledge encoded in the ViT
that is pretrained on large-scale data. To integrate pretrained-
ViT into the modality encoder, we apply the last [ out of
the total L transformer layers while maintaining a relatively
high ratio % This strategy draws inspiration from recent
research exploring ViT interpretation [16, 37]. These studies
revealed that ViT captures higher-level semantic concepts in
its deeper layers while encoding general edges and textures
in the shallower ones. Building upon these insights, we
posit that the shared high-level knowledge among different
modalities is mostly preserved in the deeper layers of the
ViT architecture. Consequently, we propose the utilization
of a set of pretrained-ViT layers within the modality encoder
in our pipeline. Notably, when % < 1, we either discard the
initial L — [ transformer layers or integrate them for S-Attn
type Lens learning if applicable.



B. More Experimental Details and Results
B.1. Datasets and Metrics

@ ULIP-ShapeNet Triplets [42]. The ULIP-ShapeNet
Triplets training data for 3D point cloud is derived from
ShapeNet55 [2] by Xue et al. [42]. All the 3D point clouds
are generated from CAD models. Anchor images are synthe-
sized using virtual cameras positioned around each object,
and texts are obtained by filling metadata into a predefined
prompt template. This dataset comprises approximately
52.5k 3D point cloud instances.

@ ULIP2-Objaberse Triplets [43]. The ULIP2-Objaverse
Triplets training data for 3D point cloud is developed by Xue
et al. [43], utilizing the recently released Objaverse [8]. For
each 3D object, 12 rendered images are obtained, spaced
equally by 360/12 degrees. Each rendered image has 10
detailed captions generated using BLIP2-opt6.7B [26]. It
includes around 798.8k 3D point cloud instances.

@ OpenShape Triplets [27]. The OpenShape Triplets
training data for 3D point clouds encompasses four promi-
nent public 3D datasets: ShapeNet [2], 3D-FUTURE [12],
ABO [5] and Objaverse [8]. For each 3D object, 12 color im-
ages are rendered from preset camera poses, and thumbnail
images are included as candidates if provided. OpenShape
employs various strategies to obtain high-quality text descrip-
tions, including filtering noisy metadata using GPT4 [33],
generating captions using BLIP [25] and Azure cognition
services, and conducting image retrieval on LAION-5B to
retrieve relevant texts with paired images closely resembling
the object’s rendered image, leading to a wider range of text
styles. This dataset comprises approximately 876k 3D point
cloud instances.

@ModelNet40 [41]. The ModelNet40 dataset is a widely
used benchmark in the field of 3D object recognition. It
consists of 12,311 CAD models from 40 categories, with
9,843 training samples and 2,468 testing samples. It includes
everyday objects such as chairs, tables, desks, and other
household items. Each object is represented as a 3D point
cloud and has been manually annotated with the object’s
category. The dataset is commonly used for tasks like shape
classification and shape retrieval. In this work, we only use
the test samples for zero-shot classification. The evaluation
is performed using Top-K accuracy.

@ScanObjectNN [40]. The ScanObjectNN dataset is a
significant resource in the domain of 3D object recognition
and segmentation. It encompasses a diverse array of 3D
object instances acquired through a commodity RGB-D cam-
era. This dataset exhibits a wide spectrum of household
items, furniture, and common indoor objects. Each individ-
ual object instance is annotated with fine-grained semantic
and instance-level labels. In total, it contains 2,902 objects
distributed across 15 distinct categories. In this work, we
follow [27] to use the variant provided by [45] for zero-shot

classification, which contains 581 test shapes with 15 cate-
gories. The evaluation is performed using Top-K accuracy.
@ Objaverse-LVIS [8]. This dataset is an annotated subset
of Objaverse [8] and consists of 46,832 shapes from 1,156
LVIS [20] categories. With a larger base of classes compared
to other benchmarks, Objaverse-LVIS presents a challenging
long-tailed distribution, making it a better reflection of the
model’s performance in open-world scenarios. In this work,
we follow [27] to use this dataset for zero-shot classification,
and the evaluation is performed using Top-K accuracy.
ESUN-RGBD [38]. We utilize paired RGB and depth maps
along with associated class labels from the SUN-RGBD
dataset. For training VIT-LENS, we employ the train set
comprising approximately 5k samples. To evaluate classifi-
cation performance, we use the test set (SUN Depth-only),
which contains 4,660 samples. Specifically for testing, we
only utilize depth as input and construct classification tem-
plates using the 19 scene classes available in the dataset. The
evaluation process involves Top-K accuracy metrics.

; NYU-Depth v2 [31]. We utilize the depth maps from
NYU-Depth v2 test set (NYU-v2 Depth-only) containing
654 samples for evaluation. We use 16 semantic classes
in the dataset and follow previous work [18] to conduct
10-class classification. Concretely, for classification, there
is an “others” class corresponding to 7 different semantic
classes — [‘computer room’, ‘study’, ‘playroom’, ‘office
kitchen’, ‘reception room’, ‘lobby’, ‘study space’]. For
classification, we compute the similarity of the “others” class
as the maximum cosine similarity among these 7 class names.
We report Top-K accuracy.

l'Audioset [15]. This dataset is utilized for both train-
ing and evaluation in our work. It contains 10-second
videos sourced from YouTube and is annotated across 527
classes. It consists of 3 pre-defined splits — unbalanced-train
split with about 2M videos, balanced-train with about 20k
videos and test split with about 18k videos. Due to the un-
availability of some videos for download, we finally have
1.69M/18.7k/17.1k for these three splits. We use the train
splits for training and the test split for evaluation. During
evaluation and when textual data serves as anchor data dur-
ing training, we make use of the textual class names along
with templates. The evaluation metric employed is mean
Average Precision (mAP).

I'"ESC 5-folds [15]. The ESC50 dataset is a widely used
benchmark dataset in the field of environmental sound classi-
fication. It comprises a collection of 2,000 sound recordings,
categorically organized into 50 classes, including animal
vocalizations, natural soundscapes, and human-made sounds.
Each class in the dataset contains 40 audio samples that are
five seconds long. It has pre-defined 5 fold evaluation, each
consisting of 400 test audio clips. In this work, we evaluate
the zero-shot prediction on across the 5 folds and report the
overall Top-1 accuracy.



l''Clotho [10]. The Clotho dataset is an audio collection
paired with rich textual descriptions, comprising a develop-
ment set of 2,893 audio clips and a test set of 1,045 audio
clips. Each audio clip is associated with five descriptions. In
this study, we focus on the text-to-audio retrieval task. For
evaluation, we treat each of the five associated captions as
an individual test query, searching within the set of audio
clips. We employ recall@K as the evaluation metric, where
a query is considered successful if the ground truth audio is
retrieved among the top-K returned audio clips.

l'AudipCaps [24]. This dataset comprises audio-visual
clips sourced from YouTube, accompanied by textual de-
scriptions. It features clips extracted from the Audioset
dataset. In this study, we employed the dataset splits out-
lined in [32], specifically excluding clips that intersected
with the VGGSound dataset. We end up with 813 clips in the
test split for zero-shot evaluation. The task is text-to-audio
retrieval and is evaluated by the recall@K metric.

I'VGGSound [3]. This is an audio-visual dataset sourced
from YouYube. It contains more around 200k video clips
of 10s long. These clips are annotated into 309 classes,
covering a spectrum from human actions to sound-emitting
objects and human-object interactions. Since some videos
are no long available for downloading, we finally end up
with 162k clips for train set and 15.5k for test set. In this
work, the audio from the test set is utilized specifically for
zero-shot classification tasks, evaluating model performance
using the Top-1 accuracy metric.

@Touch-and-go [44]. The Touch-and-Go dataset comprises
real-world visual and tactile data gathered by human data
collectors probing objects in natural settings using tactile
sensors while simultaneously recording egocentric video.
It offers annotations for 20 material classes, and provide
hard/soft (H/S) and rougH/Smooth (R/S) labels. The dataset
is organized into distinct splits: train-material and train-
H/S with 92k samples, test-material and test-H/S with 30k
samples, train-R/S with 35k samples and test-R/S with 8k
samples. In our work, we utilize the train-material split for
training and perform classification on the test-material subset.
For zero-shot classification, we employ test-H/S and test-R/S
subsets. In the context of linear probing, we fine-tune the
model using the corresponding train set for a particular task.
We report the Top-1 accuracy metric.

@ImageNet-EEG [39]. This dataset comprises EEG record-
ings obtained from six subjects while they were presented
with 2,000 images across 40 categories from the ImageNet
dataset [9]. Each category contains 50 distinct images, re-
sulting in a total of 12,000 128-channel EEG sequences.
Recorded using a 128-channel Brainvision EEG system, the
dataset covers diverse object categories, including animals
(such as dogs, cats, elephants), vehicles (including airliners,
bikes, cars), and everyday objects (such as computers, chairs,
mugs). We leverage the observed image and/or its corre-

sponding text label as anchor data. We conduct classification
tasks on both the validation set (consisting of 1,998 samples)
and the test set (consisting of 1,997 samples). Our evaluation
of model performance is based on the Top-1 accuracy metric.

B.2. Data Input and Augmentation

Image and Video. When handling modalities such as im-
ages, videos, or tactile sensor data with RGB or RGBT
inputs, we adopt the standard input representation used in
the vanilla ViT model. Specifically, for image input, we
partition it into patches of size P x P. For video input, we
employ 2-frame clips similar to the approach outlined in [18].
We construct patches of size T x P x P. Notably, T' = 2,
P = 16 for VIT-LENS-B, and P = 14 for VIT-LENS-L and
VIT-LENS-G. We inflate the visual encoder’s weights to to
accommodate spatiotemporal patches for video inputs. Dur-
ing inference, we aggregate features over multiple 2-frame
clips. This adaptation enables models initially trained on
image-text data to effectively handle videos.

3D point cloud. For 3D point cloud input, we follow pre-
vious work to uniformly sample 8,192 points [42, 43] or
10,000 points [27] as the input for 3D shape. During training,
we apply standard augmentation [42] for the point clouds.
As mentioned in Sec. A.l, we construct local patches by
sampling 512 sub-clouds, each comprising 32 points. This is
accomplished by employing Farthest Point Sampling (FPS)
and the k-Nearest Neighbors (kNN) algorithm.

Depth. For the single-view depth, we follow [18] to use the
in-filled depth and convert them into disparity. During train-
ing, when image is used as anchor data, we apply strong data
augmentation for the anchor image, including RandAug [6]
and RandErase [47]. We used aligned spatial crop for im-
age and depth. For embedding module, we set P = 16 for
VIT-LENS-B and P = 14 for VIT-LENS-L.

Audio. For audio input, we process each raw audio wave-
form by sampling it at 16kHZ, followed by extracting a log
mel spectrogram with 128 frequency bins using a 25ms Ham-
ming window with the a hop length of 10ms. Consequently,
for an audio duration of ¢ seconds, our input dimensionality
becomes 128 x 100¢. During training, we randomly sam-
ple a 5-second clip for audio input, and apply spectrogram
masking [34] with max time mask length of 48 frames and
max frequency mask length of 12 bins. When image is used
as anchor data, we randomly sample 1 frame from the corre-
sponding clip and apply RandAug [6] for the sampled frame.
We also apply Mixup [46] during training for both audio and
its anchor data, with a mixup ratio of 0.5. For embedding
module, we set P = 16 for VIT-LENS-B and P = 14 for
VIT-LENS-L, and S = 10. At inference time, we uniformly
sample multiple clips to cover the full length of the input
sample and aggregate the features extracted from these clips.
Tactile. For data from tactile sensors, we treat it similarly
to RGB images. During training, we introduce random flips
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ModEmbed » | Mini PointNet PatchEmbed PatchEmbed PatchEmbed ConvlD
Iter-CS-Attn S-Attn Iter-CS-Attn S-Attn Iter-CS-Attn
Lens Configy | N =4, M =1 N =4 N=2M=3 N=14 N=1,M=1
tie weights ~ CLIP-ViT Block.1-4 Init - CLIP-ViT Block.1-4 Init -
Pretrained ViT CLIP-ViT CLIP-ViT CLIP-ViT CLIP-ViT CLIP-ViT
Config Block.1-12 Block.5-12 Block.1-12 Block.5-12 Block.1-12
VIT-LENS-B
# Trainable Param. 34.1M 28.7TM 72.1M 29.1M 17.4M
# Total Param. 119.7M 85.9M 157.7M 86.2M 103.0M
Flops 75.4G 36.5G 64.7G 36.6G 41.1G
VIT-LENS-L
# Trainable Param. 60.0M 50.9M 127.6M 51.3M 30.6M
# Total Param. 363.4M 303.8M 431.0M 304.0M 333.9M
Flops 236.7G 168.6G 233.6G 168.8G 183.7G

Table S1. Model Configuration for VIT-LENS. We show the model configurations for the modality encoder across 3D point cloud,
depth, audio, tactile, and EEG, for both VIT-LENS-B and VIT-LENS-L architectures. For modality embedding module, we list the name of
architecture. For modality Lens configuration, we specify the adopted Lens type. For S-Attn type, N denotes the number of self-attention
layers, accompanied by details on weight initialization. For Iter-CS-Attn type, N represents the number of basis blocks and M denotes the

number of self-attention layers within each basis block. The term “tie

weights” means parameter sharing among blocks > 2 [22]. For the

pretrained-ViT configuration, we showcase the set of frozen transformer layers used in the modality encoder. With the listed configurations,
we show the number of trainable parameters, the number of total parameters and Flops for each modality encoder.

93D

Point Cloud &Depth lAudio ® Tuctile #FEEG

Optimizer AdamW
Optimizer momentum B1=0.9,8, =0.98
Peak LR Se-4/5e-4/2e-4* 2e-4 2e-4 2e-4 2e-4
Weight decay 0.2°
Batch size 512 512 2048 512 512
Warmup steps 10,000
Sample replication 1 50 1 50 50
Total epochs 200/150/150* 100 80 40 40

Rg;:]j;(;g?em RandResizeCrop(size=224) Frequency masking(12) RandResizeCrop(size=224)

. . i RandHorizontalFlip(p=0.5) Time masking(48) RandHorizontalFlip(p=0.5)

Modality augmentation RandShift * . . .

RandPerturb RandAugment(m=9, n=2) NoiseAug RandVerticalFlip(p=0.5)

RandRotate RandErasing(p=0.25) mixup(p=0.5) RandRotation(degrees=(0,360))

RandResnlzeCrop(ﬁlze:224) RandShort51deScale(n}m:ZSé, max=340) RandResizeCrop(size=224) RandResizeCrop(size=224)
RandHorizontalFlip(p=0.5) RandCrop(size=224) A K N .
. . . " . . RandHorizontalFlip(p=0.5)  RandHorizontalFlip(p=0.5)
Image augmentation |RandResizeCrop(size=224)* RandAugment(m=9,n=2) RandHorizontalFlip(p=0.5)
X RandAugment(m=9,n=2) RandAugment(m=9,n=2)
ColorJitter(0.4) RandAugment(m=9, n=2, p=0.3) ColoJitter(0.4) ColoJitter(0.4)
RandErasing(p=0.25) mixup(p=0.5) : .

Table S2. Training hyper-parameters for each modality. * Separate hyper-parameters are reported for 3D training with different datasets:
ULIP-ShapeNet, ULIP2-Objaverse, and OpenShape Triplets. * Augmentations listed for 3D training are applied to ULIP-ShapeNet and
ULIP2-Objaverse, while released features are used for training on OpenShape Triplets. © Weight decay excludes parameters for BatchNorm,

LayerNorm, bias terms, and logit scale.

along the horizontal and vertical directions to augment the
tactile input. Additionally, random rotations are applied
to further augment the input data. When image is used as
anchor data for training, we apply RandAug [6] to augment
the image. For embedding module, we follow the CLIP-ViT
to set P = 16 for VIT-LENS-B and P = 14 for VIT-LENS-
L.

EEG. For EEG input data, we follow [1] to use the 128-
channel EEG sequences. These EEG signals are filtered
within the frequency range of 5-95Hz and truncated into a
common length of 512. For embedding module,we utilize

Conv1D, configuring the kernel size to 1 and the stride to 1.
B.3. Model Configuration

In this section, we provide the configurations for encoders
of different modalities in VIT-LENS. Details are specified
in Tab. S1.

B.4. Training Setup

In Tab. S2, we list the hyper-parameters used in training for
each modality. Our experiments were done on 32GB V100
GPU clusters.



B.5. More Details and Results for VIT-LENS MFMs

Architectural details for VIT-LENS MFM integration.
Both InstructBLIP [7] and SEED [13, 14] apply the pre-
trained EVAO1-g14 [11] CLIP-VIiT to perceive and encode
images for the subsequent LLM input. Concretely, they use
the first 39 transformer layers of the 40-layer CLIP-ViT for
visual feature extraction. Adhering to this configuration, we
employ the EVAO1-g14 CLIP as the foundation model and
utilize its CLIP-ViT as an integral part of the modality en-
coder for the training of multimodal alignment. We tune the
parameters of ModEmbed and Lens. During inference, we
directly plug the ModEmbed and Lens prior to the pretrained-
ViT, enabling the yielded MFM to handle inputs of various
modality without specific instruction following.

B.5.1 Additional Results:
LENS

InstructBLIP with VIT-

Quantitative results for Captioning. In Tab. S3, we study
3D captioning (without specific training). We use human
annotations from Cap3D [29], and randomly sampled 200 ob-
jects as test samples. Our comparison involves InstructBLIP
with VIT-LENS against CLIPCap from OpenShape [27].
Evaluation is conducted using the CIDEr metric, supple-
mented by GPT4 to identify and calculate matching aspects
(e.g., shape, material) between model captions and human
annotations (scored from O to 10). Results demonstrate that
InstructBLIP with VIT-LENS outperforms CLIPCap-OS in
both metrics, underscoring its effectiveness.

‘ CIDErt GPT41
CLIPCap-OS [27] 23.2 3.6
InstructBLIP w/ VIT-LENS 38.5 54

Table S3. Quantitative results for 3D Captioning.

Comparison of InstructBLIP with VIT-LENS against
other methods on 3D data instruction following. We train
VIT-LENS for 3D point cloud using ULIP2-Objaverse and in-
tegrate it into InstructBLIP. Beyond capturing the high-level
semantics of the input data, we observed that leveraging the
EVAOQ1-g14 CLIP-ViT within the modality encoder further
enhanced the model’s ability to capture local details.

Our qualitative evaluation involves a comparison with:
(1) PointBERT [45] aligned with EVAO1-g14 CLIP, replac-
ing the vision encoder used in InstructBLIP; and (2) CLIP-
Cap [30] from OpenShape [27]. We present a snapshot
of qualitative outcomes across different models in Tab. S5,
Tab. S6 and Tab. S7. These examples showcase several capa-
bilities exhibited by VIT-LENS integration without specific
tuning using 3D-related instructional data. Notably, the ex-
amples demonstrate that VIT-LENS empowers InstructBLIP
to accurately describe 3D objects. For instance, the plant
example in Tab. S6 is characterized as “sitting in a ceramic

pot” and “bamboo-like”. Moreover, VIT-LENS excels in
capturing local visual concepts beyond the most prominent
ones. For instance, the piano example in Tab. S5 describes
the observation of a “chair”.

For PointBERT integrated InstructBLIP, although Point-
BERT achieves decent performance for zero-shot classifi-
cation, it fails to provide accurate information for the In-
structBLIP as VIT-LENS does. We can see that in Tab. S5,
although it recognizes the piano, it fails to provide accurate
brief and detailed description since it includes “person” in
its description, which does not exist in the 3D input. Also, it
fails to recognize the plant in Tab. S6 and the toilet in Tab. S7.

CLIPCap-OpenShape, while occasionally displaying
some relevant entities in captions (“vase” in Tab. S6 and
“toilet” in Tab. S7), often generates hallucinations and inac-
curate captions.

The overall results demonstrate that VIT-LENS excels not
only at classifying the salient object of the 3D input, but also
capturing the visual details. This merit is surprising: despite
the fact that we only explicitly use the [CLS] for align-
ment, the integrated model exhibits the ability to capturing
local information. This ability might stem from VIT-LENS
potentially inheriting information captured by other tokens,
which could carry local details to the input of InstructBLIP.
This capability indicates that the model might leverage the
collective knowledge present in various tokens, not limited
to the [CLS], contributing to its robustness in encoding rich
visual information.

InstructBLIP with VIT-LENS for input of multiple
modalities. We demonstrate that the versatile omni-modal
VIT-LENS encoder, coupled with an array of specialized
Lenses, functions as a sensor adept at concurrently perceiv-
ing and understanding multiple modalities. To achieve this,
we concatenate the outputs from diverse modality Lenses
prior to inputting them into the ViT transformer. Subse-
quently, the encoded embeddings from this concatenation
are forwarded to the LLM within InstructBLIP for text gen-
eration.

Qualitative results' are showcased in Tab. S8 for dual-
modality input and in Tab. S9 for tri-modal input. The
outputs produced by InstructBLIP with VIT-LENS under-
score its remarkable ability to concurrently interpret multiple
modalities, akin to perceiving an image. Notably, as evident
in the qualitative results, the incorporation of VIT-LENS en-
hances the resulting MFM'’s capacity to digest multi-modal
inputs, discover unconventional co-occurrence of concepts
from different modalities, and craft stories based on the
aggregated information from multiple modalities without
specific instruction tuning.

Photos credited to https: //www.pexels.com/.
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B.5.2 Additional Results: SEED with VIT-LENS

Quantitative results for generation. For Image Generation,
We assess Compound 3D-to-Image Generation (Fig.6-D) and
Depth-to-Image Generation (Fig.6-C-2) using CLIPScore for
semantic consistency with anchored text prompts, and FID
for visual quality (real images needed, applicable for Depth-
to-Image case). For Compound 3D-to-Image Generation,
we compare to PointBERT [45] as the 3D encoder (aligning
it in training, then replace the entire ViT for integration).
CLIPScore is calculated using the concatenated text of the
object name and user prompt. We use the ModelNet40 [41]
test set for evaluation. For Depth-to-Image Generation, we
compare to internGPT [28], a tool-based framework call-
ing ImageBind and diffusion models for image generation.
CLIPScore uses class names, and FID is measured using an-
chored real images. We use the SUN-RGBD [38] test set for
evaluation. Results in Tab. S4 show that our method achieves
better semantic consistency and higher visual quality, high-
lighting the effectiveness of our plug-and-play any-to-image
generation.

‘ Com.3D-to-Img ‘ Depth-to-Img

CLIP.ST CLIP.ST FIDJ|
M (compared) 17.8 17.4 14.1
SEED w/ VIT-LENS 22.1 20.7 13.2

Table S4. Quantitative results for VIT-LENS-integrated SEED
compared to M in Image Generation.

Additional qualitative results. Integrating the well-trained
modality Lenses into SEED enables seamless any-modality
to image generation. In addition to the primary paper, we
present further qualitative results in Fig. S1.

In (S-A), we showcase the capability of generating images
from any modality input by encoding the modality informa-
tion using Lens and the SEED tokenizer [13]. We append to
this with a text prompt, “Generate an image based
on what you perceive.” The results demonstrate
that our VIT-LENS integrated MFM successfully generates
images across diverse modalities, including 3D point clouds,
audio, EEG, tactile, and depth. Notably, in the 3D point
cloud examples (Row 1 in S-A), the model retains the local
structure of the 3D shapes. Furthermore, the model exhibits
the ability to generate diverse images for different inputs
within the same category, exemplified by the audio examples
for “sea waves”, “engine”, “crackling fire”” and more. This
showcases the robustness of our VIT-LENS.

In (S-B), we show that our integration extends SEED’s
capability for compositional image generation to any modal-
ity. For better visualization, we show examples for 3D
point clouds. We show the main instruction under each
example. In practice, we feed any modality input into
the LLLM via Lens and the SEED tokenizer, supplement-
ing it with the prompt “[Instruction], generate
an image” to guide text-based generation. The presented

results highlight the model’s ability to retain visual concepts
accurately in the generated images. Additionally, it preserves
the local structure rather than merely focusing on high-level
semantics. Notably, in examples such as “guitar” and “car”
the model successfully retains the shape and some local
structures, showcasing its nuanced understanding beyond
high-level semantic understanding.

Moreover, the model demonstrates the capability to
intake inputs from various modalities and subsequently
generate an image that combines all the conveyed con-
cepts in a coherent manner. In practice, we employ the
prompt “linput tokens A], [input tokens
B], please generate an image to combine
them” to facilitate this process. For a visual examples,
please refer to Fig. 6(E) in the main paper.



Visual input example, Piano:

User
InstructBLIP w/ VIT-LENS
User
InstructBLIP w/ VIT-LENS
User
InstructBLIP w/ VIT-LENS

What is this object?

Piano.

What is the function of this?

Pianos are used to play music.

Describe it in detail.

The object in the image is an upright piano, which is a type of keyboard
instrument known for its distinct sound and versatility. The piano is placed
on a wooden surface, possibly a floor or a stage, and it appears to be
quite large in size. Additionally, there is a chair placed next to the piano,
suggesting that it may be used for seating during performances or lessons.
The piano is positioned in the center of the image, making it the focal point
of the scene. Overall, the combination of the piano and the chair creates
an inviting atmosphere for music enthusiasts or those interested in learning
how to play the piano.

User
InstructBLIP w/ PointBERT
User
InstructBLIP w/ PointBERT
User
InstructBLIP w/ PointBERT

What is this object?

Advertisement.

Describe this object briefly.

A man sitting at a desk with a piano in the background.

Describe this object in detail.

This scene showcases a person sitting at a desk with a piano in the back-
ground. The person is wearing a suit and tie, indicating that they may be
attending an important business meeting or event. The scene is set in a
professional environment, emphasizing the importance of proper attire and
etiquette. Additionally, there is a laptop on the desk, suggesting that the per-
son may be working on various tasks related to their job or responsibilities.

CLIPCap-Openshape [27, 30]

A white house with a microphone in the middle of a dark room.

Table S5. Example for VIT-LENS enabling InstructBLIP to understand 3D inputs.



Visual input example, Plant:

User
InstructBLIP w/ VIT-LENS
User
InstructBLIP w/ VIT-LENS

What is this object?

Potted plant.

Describe it in detail.

In the image, there is a potted plant sitting in a ceramic pot on a table. The
plant appears to be a bamboo-like species, and it is positioned in such a way
that its leaves appear to be growing out of the top of the pot. The plant’s
placement on the table suggests that it is meant to be a decorative element,
adding a touch of greenery to the space. The ceramic pot has a diameter of
around 10 centimeters, making it a suitable size for holding a small plant
like this one. Overall, the image showcases a simple yet elegant arrangement
of a potted plant in a ceramic pot on a table.

User
InstructBLIP w/ PointBERT
User
InstructBLIP w/ PointBERT

What is this object?

1000px by 1000px

Describe this object briefly.

A man in a suit and tie is standing in front of a desk.

CLIPCap-Openshape [27, 30]

Flowers in a vase, black and white.

Table S6. Example for VIT-LENS enabling InstructBLIP to understand 3D inputs.

Visual input example, Toilet:

User
InstructBLIP w/ VIT-LENS
User
InstructBLIP w/ VIT-LENS

What is in the scene?

Toilet.

Describe it in detail.

The image features a close-up view of a toilet with its lid open, revealing
the inside of the toilet bowl. The toilet appears to be made of porcelain or
ceramic material, and it has a seat attached to it. The toilet is positioned
on a white background, providing a clear and detailed view of the toilet’s
design and construction. In addition to the toilet, there is another object in
the image, which could be a piece of furniture or a decorative item, but it is
not as prominent as the toilet. Overall, the image showcases a functional and
well-designed toilet, emphasizing the importance of cleanliness and hygiene
in daily life.

User
InstructBLIP w/ PointBERT
User
InstructBLIP w/ PointBERT

What is in the scene?

Lamp.

Describe this object briefly.

An image of a desk with a lamp on it.

CLIPCap-Openshape [27, 30]

The moment a man’s hand reaches out to touch a toilet bowl.

Table S7. Example for VIT-LENS enabling InstructBLIP to understand 3D inputs.



InstructBLIP w/ VIT-LENS, Two Multimodal Inputs.

Example 1: 3D Point Cloud + Image

<

Prompt 1: Describe based on what you see.

Response 1: An image of a piano with the earth in the background.

Prompt 2: What is unusual about this image?

Response 2: The unusual aspect of this image is that it depicts a piano floating in space, with the Earth visible in the
background. This is an imaginative and creative representation of a musical instrument in an unconventional setting,
showcasing its versatility and adaptability to different environments.

Prompt 3: Imagine the events leading up to this moment and those that follow. Create a story that links them together.
Response 3: In the image, we see a grand piano placed on top of the earth, with the moon and stars visible in the
background. This setting creates a unique and captivating scene that invites the viewer to imagine the events leading up
to this moment and those that follow. One possible storyline could involve a talented pianist who has always dreamed
of performing on top of the earth. After years of hard work and dedication, they finally have the opportunity to make
their dream come true. As they prepare for their performance, they reflect on the journey that led them to this moment
and the challenges they faced along the way. During their performance, they play a beautiful melody that captures the
essence of the earth’s beauty and the vastness of the universe. The audience is mesmerized by the performance, and the
pianist feels a sense of accomplishment and fulfillment as they conclude their performance on top of the earth.

Example 2: 3D Point Cloud + Image

Prompt 1: Imagine you are a narrator looking at this, describe the essence of what you see.

Response 1: An astronaut standing next to a pickup truck on the surface of the moon.

Prompt 2: What is unusual aboout this image?

Response 2: The unusual aspect of this image is that it depicts an astronaut standing on the surface of the moon with a
pickup truck in the foreground. This combination of elements is not commonly associated with space exploration or
the moon’s surface, making it an unconventional and eye-catching image.

Prompt 3: Craft a narrative based on the visual elements in the picture. Let your imagination guide the story.
Response 3: In the image, an astronaut is standing on the moon’s surface with a pickup truck in the background. The
astronaut is wearing a spacesuit and appears to be exploring the lunar terrain. The pickup truck is parked on the moon’s
surface, adding a unique touch to the scene. The combination of the astronaut and the pickup truck creates an intriguing
narrative that invites the viewer to imagine what might be happening in this futuristic setting.

{g ®

EEG: Dog Audio: Wave

Example 3: EEG + Audio

Prompt 1: Tell me based on what you see.

Response 1: A small dog sitting on top of a sandy beach.

Prompt 2: Tell me more about this scene.

Response 2: In the image, we see a cute little dog sitting on a sandy beach. The dog is wearing a blue collar and
appears to be waiting patiently for its owner or someone else to come along. The beach is littered with small pebbles,
adding to the serene atmosphere of the scene. As the sun sets in the background, the sky takes on a beautiful orange
and pink hue, casting a warm and inviting glow over the entire area. The dog seems to be enjoying the peaceful
surroundings, taking in the sights and sounds of the beach. It’s a heartwarming image that captures the beauty of nature
and the joy of spending time with a beloved pet.

Table S8. Example to illustrate the Instruct-BLIP with input of two modalities.




InstructBLIP w/ VIT-LENS, Three Multimodal Inputs.

Example 1: 3D Point Cloud + Image + Image

Prompt 1: Describe the scene based on what you see.

Response 1: A man walking a dog on a beach with palm trees in the background.

Prompt 2: Describe the details of what you see.

Response 2: The image depicts a man and his dog walking on a sandy beach. The man is holding the dog’s leash,
while the dog appears to be enjoying its time on the beach. In the background, there is a palm tree visible, adding to the
serene atmosphere of the scene. The man and the dog seem to be in good spirits, enjoying each other’s company as
they stroll along the beach.

Prompt 3: Imagine the events leading up to this moment and those that follow. Create a story that links them together.
Response 3: In the story, the man and his dog are walking along the beach, enjoying the sunny day. As they walk, the
man notices a piece of paper lying on the sand. Curious, he picks it up and discovers that it’s an advertisement for a
photography contest. The man decides to enter the contest and submits a photo of himself and his dog on the beach. To
his surprise, his photo is selected as one of the winners, and he is invited to attend the award ceremony. At the event, he
meets other photographers and learns more about the art of photography. Through this experience, the man gains a new
appreciation for photography and decides to pursue it as a hobby. He continues to take photos of his dog and other
subjects, honing his skills and capturing unique moments in time. Eventually, his passion for photography leads him to
become a professional photographer, and he shares his work with others, inspiring them to appreciate the beauty of the
world around them.

Example 2: EEG + Tactile + 3D Point Cloud

& o ® o

EEG: Dog Tactile: Grass

Prompt 1: Describe what you see.

Response 1: A person and a dog walking in a grassy area.

Prompt 2: Create a short story around the given visual contents.

Response 2: This scene depicts a man walking his dog in a grassy field. The man and the dog are both visible in the
scene, with the man standing on the left side of the image and the dog standing on the right side. The man is wearing a
shirt and pants, while the dog is wearing a collar. The man and the dog seem to be enjoying each other’s company as
they walk together in the field.

Example 3: EEG + Audio + Audio

47% ORI OIS}
f
EEG: Horse Audio: Wave Audio: Fireworks

Prompt 1: Describe what you see.

Response 1: A white horse running on the beach with fireworks in the background.

Prompt 2: Create a short story around the given visual contents.

Response 2: The image depicts a white horse standing on a beach, surrounded by water and trees. The horse appears
to be in motion, possibly running or galloping across the beach. In the background, there is a firework display taking
place, adding to the festive atmosphere of the scene. The combination of the horse, the beach, and the fireworks creates
a unique and visually captivating image.

Table S9. Example to illustrate the Instruct-BLIP with input of three modalities.
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Figure S1. Qualitative examples for plugging VIT-LENS into SEED. We present the input-output pairs in a local left-right pattern. (S-A)
Any modality to image generation. The integrated model generates an image output (right) corresponding to the provided individual input
(left). (S-B) Compositional any modality to image generation. We focus on 3D point cloud cases in the examples for better visualization.
The integrated model generates a corresponding image (right) when presented with the input (left) along with the conditioned text prompt.



B.6. Applications

The versatility of VIT-LENS in binding diverse modalities
into a unified space unlocks a multitude of applications, in-
cluding cross-modal retrieval and semantic search. This
section demonstrates the application of VIT-LENS in the do-
main of any-modality to 3D scene understanding, leveraging
the capabilities of the recent OpenScene framework [35].
OpenScene aligns 3D point features within the CLIP embed-
ding space, enabling text-based and image-based searches
within a 3D scene. Building upon OpenScene, VIT-LENS
extends this understanding of 3D scenes to encompass more
modalities.

The qualitative results in Fig. S2 demonstrate this appli-
cation’s ability to utilize inputs from multiple modalities
to identify relevant areas within the scene. It effectively
highlights objects like the toilet flush based on toilet audio,
the sink area using 3D point cloud data of a water sink, the
kitchen area from the depth map, and the presence of sofas
inferred from tactile input indicating a leather sofa.

.
ki Kitchen

- J

Figure S2. Application for any-modality to 3D scene under-
standing. This application facilitates scene exploration by accept-
ing inputs from diverse modalities and subsequently highlighting
relevant areas within the scene. In the visualization, the color gra-
dient represents the relevance level within the scene (yellow is the
highest, green is moderate, blue is low, and uncolored is lowest).

B.7. Additional Ablation Studies

This section presents additional ablation experiment findings
regarding VIT-LENS training.

B.7.1 Anchor Data for Alignment

We study the effect of using different anchor data for mul-
timodal alignment during training. We employ VIT-LENS-
B in experiments. We train for 3D point cloud on ULIP-
ShapeNet and follow the main settings for other modalities.
The results are shown in Tab. S10. Our observations reveal
that employing both image and text as anchor data yields
superior performance for tasks involving 3D point clouds,
depth, and audio. In contrast, utilizing only image or text
alone results in comparatively lower accuracy. For tactile
and EEG tasks, aligning with text produces the best results.
Our speculation is that in the case of tactile data, the aligned
images depict close-up views of objects, differing from those
used in CLIP training. Consequently, the CLIP image en-
coder might not offer the optimal alignment space. As for
EEG, due to the very limited scale of data, employing text-
only alignment seems to be the most effective approach.

Anchor data ¥| @MN40 ©SUN-D IESC HTAG-M & IN-EEG

I 52.1 29.9 63.8 29.9 26.3
T 48.3 47.6 59.4 71.9 39.0
I+T 65.4 50.9 71.2 63.6 359

Table S10. Align to different anchor data during training. For
different modalities, we show the classification results or zero-shot
classification results when aligned to Image(I), Text(T) or Image
and Text (I+T) during training.

B.7.2 Different Ratio of Training Data
|| 0 0 0s-PointBERT [27]
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Figure S3. Using different ratios of training data in OpenShape
Triplets to train for 3D point cloud. Zero-shot prediction on O-LVIS
is reported for OS-PointBERT and VIT-LENS-G.

Our investigation delves into the influence of training data by
performing ablation studies using different ratios of Open-
Shape Triplets [27] for training a 3D point cloud encoder.



Specifically, we compare the performance of VIT-LENS-
G against OpenShape PointBERT in zero-shot classifica-
tion on O-LVIS. The results, presented in Fig. S3, demon-
strate that VIT-LENS-G consistently outperforms Open-
Shape PointBERT across all ratios. Remarkably, in sce-
narios with limited training data (e.g., 1% training data),
VIT-LENS showcases a significant performance advantage
over PointBERT. This suggests the data-efficient nature of
VIT-LENS, attributed to the rich knowledge encapsulated
within pretrained-ViT.

B.7.3 Additional Architectural Ablations

This section focuses on additional ablation experiments cen-
tered around architectural designs. We focus on 3D tasks
in this section. By default, our pretraining phase utilizes
ULIP-ShapeNet Triplets [42], followed by evaluation on the
ModelNet40 [41] benchmark on zero-shot classification.
Comparison with PointBERT. We conduct experiments
to compare VIT-LENS with PointBERT [45], a transformer
based architecture for 3D point cloud understanding. This
comparison involves aligning to the feature space of dif-
ferent CLIP variants and employing distinct pretraining
datasets (ULIP-ShapeNet, ULIP2-Objaverse and OpenShape
Triplets). As is shown in Tab. S11, VIT-LENS outperforms
PointBERT over all combinations of pretraining datasets
and CLIP model for alignment. This substantiates the effi-
cacy of harnessing a pretrained ViT to advance 3D shape
understanding.

PT.D::CLIP Model v PointBERT | VIT-LENS
2 OpenAl-B16 60.2 61.7
:: OpenCLIP-B16 62.6 65.4
:: OpenAl-L14 61.2 63.3
:: OpenCLIP-L14 65.4 70.6
2 OpenAl-B16 70.6 73.4
:: OpenCLIP-B16 71.7 74.8
2 OpenAl-L14 74.1 76.1
:: OpenCLIP-L14 77.8 80.6
2 OpenCLIP-bigG14 84.4 87.4

Table S11. Comparisons with PointBERT. We use differ-

ent pretraining datasets(» :ULIP-ShapeNet, »:ULIP-2 Objaverse,
:OpenShape Triplets) and different CLIP models as the founda-

tion model for alignment. We report Top-1 accuracy on MN40.

Configuration of Iter-CA-Attn type Lens in VIT-LENS.
We delve into the impact of different design choices of
the Iter-CA-Attn type employed in VIT-LENS for 3D en-
coder. Our study encompasses the ablation of number of
basis blocks (depth), as well as the exploration of parameter
sharing beyond the second basis block (included), follow-
ing [22]. The results outlined in Tab. S12 indicate that,
beyond a certain threshold, notably four in our setting, in-
creasing the number of basis blocks does not yield improve-
ments in performance. Moreover, parameter sharing among

blocks demonstrates its capability to reduce parameters while
achieving comparable performance. This emphasizes the ef-
ficacy and efficiency of the Iter-CA-Attn Lens architecture
within VIT-LENS for establishing connections between the
3D input and a pretrained-ViT.

Depth Vge};;lets #T.param | Acc@1
2 - 34.1M 64.8
4 X 67.5M 64.2
4 34.1M 65.4
6 X 100.8M 65.1
6 34.1M 64.0
8 X 134.2M 64.0
8 34.1M 64.3

Table S12. Configuration of Iter-CA-Attn Lens on depth and
parameters sharing. We show the number of trainable parameters
and report the zero-shot Top-1 accuracy on MN40. The default
setting is marked with color.

Other hyper-parameters in VIT-LENS. We vary the num-
ber of latents used in the Lens of VIT-LENS-B. Note that
the number of latents equals to the sequence length of the
pretrained-ViT input. As delineated in Tab. S13, employ-
ing a larger number of latents, such as 384 and 512, shows
slightly improved performance while concurrently increas-
ing computational complexity measured in GFlops. This
observation underscores the inherent capability of the CA-
Iter-Attn type Lens to extract information from inputs of
variable sizes and seamlessly connect them to the pretrained-
ViT, mitigating computational complexity. Additionally, we
investigate whether the inclusion of the pretrained-ViT posi-
tion embedding influences model performance. Specifically,
we interpolate the original position embedding while varying
the number of latents. The results presented in Tab. S13 sug-
gest that omitting the pretrained position embedding does
not notably degrade performance. This suggests that the
Lens is able to implicitly assimilate position information.

PointEmbed — Lens. To validate the efficacy of the
pretrained-ViT, we investigate the performance of the
“PointEmbed — Lens” paradigm. In this setup, the mean
pooling feature of the CA-Iter-Attn Lens aligns directly with
the CLIP feature space. We conduct experiments with vari-
ous hyper-parameter configurations, and the comprehensive
outcomes are presented in Tab. S14. Specifically, the con-
figuration featuring a “depth of 6, with no parameter shar-
ing” possesses a total parameter count comparable to the
default setting of VIT-LENS (approximately 119M parame-
ters). Despite having less trainable parameters, VIT-LENS
outperforms this variant of “PointEmbed — Lens” by a sig-
nificant margin. Besides, VIT-LENS also outperforms the
rest variants. This observation underscores the importance
of harnessing the capabilities of the pretrained-ViT.



#latents ViT.pos | Flops | Acc@l1
128 X 54.0G 65.1
128 54.0G 65.2
196 X 75.4G 65.1
196 754G 65.4
256 X 94.6G 65.5
256 94.6G 65.5
384 X 136.4G 66.2
384 136.4G 66.3
512 X 179.5G 66.3
512 179.5G 67.4

Table S13. Configuration of #latents and ViT position embed-
ding. We vary the number of latent queries and switching the
use of the original pretrained-ViT position embeddings. The re-
sults showcase the corresponding GFlops to indicate computational
complexity, along with reporting the Top-1 zero-shot accuracy on
MN40. We show the default setting marked with color for clarity.

Depth  #latents \5;;;3 #T.param  Flops | Acc@1
2 196 - 34.1IM 274G 62.2
4 196 X 67.5M 40.5G 62.4
8 196 X 134.6M  66.7G 62.7
6 196 X 101.2M  53.6G 61.9
6 196 34.1IM 53.6G 62.3
6 256 X 101.3M  65.6G 63.5
6 256 342M 65.6G 62.7
6 512 X 101.5M  116.6G 62.5
6 512 34.4M 116.6G 62.3

Default setting of VIT-LENS-B
4 196 ‘ 34.1M 75.4G ‘ 65.4

Table S14. Configurations for PointEmbed — Lens. We vary
the depth of Lens and alter sharing weights in Lens. We report the
corresponding trainable parameters and zero-shot Top-1 accuracy
on MN40. We show the default setting marked with color at the
bottom for clarity.

PointEmbed — pretrained-ViT. We also delve into the
paradigm of “PointEmbed — pretrained-ViT”. As detailed
in Tab. S15, training only the PointEmbed yields a zero-shot
accuracy of 50%, significantly lower than that achieved by
VIT-LENS due to the restricted number of trainable param-
eters. Subsequently, enabling the training of transformer
blocks results in an improved zero-shot performance. How-
ever, this specialized training approach tailored specifically
for enhancing 3D understanding might limit the adaptability
of the resulting ViT to other modalities, potentially impact-
ing the overall generalization ability of the ViT. In contrast,
VIT-LENS achieves commendable performance while largely
preserving the core parameters of the pretrained-ViT. This
strategy effectively harnesses the extensive knowledge em-
bedded within the pretrained-ViT across diverse modalities,
with only a marginal increase in new parameters, showcasing
its robustness and adaptability.

Unlocked Components in ViT #T.param  Flops | Acc@1
None 7.3K 111.4G 50.0
[CLS] 7.3K 111.4G 53.6
[CLS],Proj 1.IM 111.4G 60.8
[CLS],Proj,Block.1,Block.2 15.3M 111.4G 64.8
[CLS],Proj,Block.11,Block.12 15.3M 111.4G 64.2
[CLS],Proj,Block.1l-Block.4 29.5M 111.4G 65.4
[CLS],Proj,Block.9-Block.12 29.5M 111.4G 64.7
[CLS],Proj,Block.1l-Block.6 43.7M 111.4G 66.4
[CLS],Proj,Block.7-Block.12 43 TM 111.4G 65.6
All 86.6M 111.4G 67.7
Default setting of VIT-LENS-B

None(tune PointEmb, Lens) 34.1M 75.4G ‘ 65.4

Table S15. Configurations for PointEmbed— pretrained-ViT.
We vary the sub-modules of pretrained-ViT unlocked during train-
ing. We report the corresponding trainable parameters, GFlops and
zero-shot Top-1 accuracy on MN40. We show the default setting
marked with color at the bottom for clarity.

C. Further Discussion

Pretrained Data Align to Acc@]
ULIP-ShapeNet OpenCLIP-L14 (T) 48.7
ULIP-ShapeNet Flan-T5 (T) 52.5
ULIP-ShapeNet OpenCLIP-L14 (I+T) 62.6
ULIP2-Objaverse | OpenCLIP-L14 (T) 68.2
ULIP2-Objaverse | Flan-T5 (T) 72.2
ULIP2-Objaverse | OpenCLIP-L14 (I+T) 79.0

Table S16. Train 3D encoder with pretrained Flan-T5 XL. We
use different pretrained data and foundation modelS for alignment.
We report zero-shot Top-1 accuracy on MN40.

Beyond using pretrained-ViT. The core of VIT-LENS in
advancing representations across diverse modalities relies
on leveraging the profound knowledge embedded within the
pretrained-ViT. Given the significant enhancements facili-
tated by the pretrained-ViT, an initial exploration involves
employing the powerful Large Language Model (LLM) to
encode inputs across various modalities. In this endeavor, we
replace the pretrained-ViT with Flan-T5 XL [4] within the
VIT-LENS architecture. To facilitate alignment, we introduce
an additional trainable token. Training the model on ULIP-
ShapeNet and ULIP2-Objaverse under various experimental
configurations, we report the zero-shot classification perfor-
mance on MN40. Results are show in Tab. S16. Notably,
when trained on ULIP-ShapeNet, the model exhibits profi-
cient alignment with CLIP (I+T), achieving a notable top-1
zero-shot accuracy of 62.6% on MN40. Moreover, upon
scaling the model to the ULIP2-Objaverse dataset enriched
with textual captions, a remarkable improvement is observed.
Specifically, it achieves an outstanding top-1 accuracy of
79%, surpassing the performance obtained by training Point-
BERT from scratch with the same CLIP model for alignment.
This outcome underscores the potential of this approach for
omni-modal learning. We leave further exploration of this



promising avenue to future work.

Comparison to the concurrent ImageBind-LLM [21]. A
concurrent work, ImageBindLLM, is proposed to train a bind
network and finetune the LLM to build an multi-modality
instruction models. An caching image strategy has also been
introduced as part of this framework, aiming to optimize the
inference stage for enhanced performance.

Different from ImageBind LLM, (1) VIT-LENS enhances
omni-modal encoder and performance. VIT-LENS produces
a more robust omni-modal encoder, exhibiting superior per-
formance across a diverse spectrum of understanding tasks
compared to the ImageBind encoder. (2) Greater intergrta-
tion flexibility. VIT-LENS offers a more versatile integration
approach. By selectively choosing the appropriate ViT and
foundation model alignment, VIT-LENS seamlessly inte-
grates with a wide array of Multimodal Foundation Models
(MFMs) without necessitating the use of a binding network.
Moreover, VIT-LENS integrated MFMs demonstrate
capabilities, such as compositional any-to-image genera-
tion, which are absent in ImageBind LLM. (3) Potential
advantages over ImageBind LLM. In contrast to ImageBind
LLM, which uses a single token for LLM connection,
VIT-LENS is able to utilize the entirety of output tokens in
its integration with MFMs. This characteristic showcases its
potential in capturing local information, potentially offering
an advantage in comprehensive information aggregation.
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