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Supplementary Material

In this supplementary material, we first provide addi-
tional details of our proposed MLS-BRN model (Sec. 1).
Then we provide additional details of our newly released
datasets, as well as the sample diversity used in our study
(Sec. 2). Last, we provide additional experimental results
of building footprint segmentation, offset angle prediction,
and 3D building reconstruction (Sec. 3).

1. Additional details of methods

1.1. Additional training details

In our proposed model, different levels of samples are su-
pervised with different training strategies. Consequently,
the ground truth of different levels of samples is utilized
differently (Fig. 1). The PBC module employs the build-
ing footprint and height ground truth of XH to compute the
pseudo building bboxes, while the building footprint and
height ground truth of XOH are not used by PBC since
their building bbox ground truth is already known. How-
ever, PBC uses the off-nadir angle and offset angle ground
truth of XOH for supervising the training of the two an-
gle heads. Furthermore, PBC cannot calculate the pseudo
building bboxes for XN since they have no building height
ground truth. Instead, the pseudo building bboxes of XN

are calculated by enlarging the building footprint ground
truth by a certain percentage.

Figure 1. The utilization details of the ground truth of samples
with different supervision levels. The green dotted lines indicate
the supervision of the off-nadir angle head and offset angle head
in PBC using the ground truth provided by XOH . The blue dotted
lines denote the calculation of the pseudo building bbox of XH .
The orange dotted line denotes the calculation of the pseudo build-
ing bbox of XN .

1.2. Additional implementation details

In our proposed model, the feature map sent to PBC for cal-
culating the pseudo building bbox is the largest layer from
FPN (i.e. the layer with the size of 256 × 256). The off-
nadir angle head of PBC is composed of 4 Conv layers and
3 FC layers, while the off-nadir angle head of PBC is com-
posed of 8 Conv layers and 6 FC layers.

1.3. Additional details of 3D model reconstruction

We apply the method outlined in [12] to regularize the pre-
dicted building footprint mask obtained from our MLS-
BRN. Subsequently, we use the Douglas–Peucker algorithm
[3] to simplify the regularized polygons by reducing extra-
neous vertices. Furthermore, the raster polygons are con-
verted to vector data format for visualization. Lastly, the
vectorized polygons are combined with the predicted build-
ing height to complete the 3D building reconstruction.

2. Additional details of datasets

2.1. Details of existing building datasets

Tab. 1 lists some popular building footprint extraction and
3D reconstruction datasets (with offset or height annota-
tions). The public building footprint extraction datasets far
exceed the 3D reconstruction datasets in terms of both the
number of images and the number of building instances.
Our MLS-BRN demonstrates the great potential of lever-
aging large-scale footprint segmentation datasets to im-
prove 3D building reconstruction performance and reduce
the need for 3D annotations.

Dataset #Images #Instances Off-Nadir Foot. Offset Height

Microsoft [7] - 1,240M × ✓ × ×
Open Bld. [9] - 1,800M × ✓ × ×
CrowdAI [8] 340K 2,915K × ✓ × ×
WHU [5] 8.2K 120K × ✓ × ×
SpaceNet [2] 24.6K 303K × ✓ × ×
MVOI [11] 60K 127K ✓ ✓ × ×
OmniCity [6] 75K 2,573K ✓ ✓ × ✓
DFC19 [1] 3.2K 500K ✓ ✓ ✓ ✓
ATL-SN4 [1] 8K 1,100K ✓ ✓ ✓ ✓
BONAI [10] 3.3K 269K ✓ ✓ ✓ ✓
ISPRS 3D [4] 0.033K - ✓ ✓ ✓ ✓

Table 1. A summary of popular building footprint segmentation
and 3D reconstruction datasets. Foot. is the abbreviation for foot-
print.



Figure 2. Remote sensing images of 8 cities. The remote sensing images of Beijing, Chengdu, Harbin, Jinan, Shanghai and Xi’an are
chosen from the BONAI dataset. The images of New York are chosen from the OmniCity-view3 dataset. The images of Hong Kong are
chosen from the HK dataset.

2.2. Details of samples of each city

In Fig. 2, we provide some examples of the remote sensing
image samples used in our datasets, which demonstrate a
high diversity of each city in terms of the off-nadir angle,
offset angle, as well as the building density, areas, height,
etc.

2.3. Additional details of newly released dataset

Figure 3. The building height distribution of OmniCity-view3.

In this study, we provide additional offset annotations for
the view3 subset of OmniCity (denoted by OmniCity-
view3) since this subset contains images with the largest

off-nadir angles. Specifically, we annotate roof-to-footprint
offsets for 17,092 and 4,929 images from trainval and test
sets, respectively. Fig. 3 demonstrates the building height
distribution of OmniCity-view3 dataset. We also release
a new dataset collected from Hong Kong (denoted by HK
dataset), containing 500 remote sensing images for the
trainval set and 119 images for the test set, all of which
are annotated with building footprint, roof-to-footprint off-
set, and building height. The remote sensing images are
cropped to 1024 × 1024 and contain 24,851 annotated
buildings in total. Fig. 4 demonstrates the building height
distribution of HK dataset.

Figure 4. The building height distribution of HK.



3. Additional experimental results

3.1. Ablation study on multi-level sample division

Tab. 2 displays the footprint segmentation and offset pre-
diction performance of our method trained on datasets with
different proportions of XOH and XH samples. The per-
formance of LOFT-FOA [10] trained only on the XOH sam-
ples are also listed for better demonstrating the performance
gains from introducing different percentages of XH sam-
ples. The results show that the building footprint segmenta-
tion performance difference between LOFT-FOA [10] and
our method is getting smaller with the increase in the pro-
portion of XOH samples. In the main paper, we opt for
the ratio of 30%:70% since the building footprint perfor-
mance of our method, trained on BN30/70, surpasses that
of LOFT-FOA [10] trained on BN100.

dataset Model F1 Precision Recall EPE

BN10 LOFT-FOA 53.91 53.28 54.55 7.42
BN10/90 Ours 63.18 65.05 61.42 6.14

BN20 LOFT-FOA 59.65 59.05 60.27 5.79
BN20/80 Ours 64.47 67.71 61.52 5.49

BN30 LOFT-FOA 61.35 61.84 61.65 5.70
BN30/70 Ours 65.50 66.94 64.11 5.39

BN40 LOFT-FOA 63.17 62.79 63.56 5.26
BN40/60 Ours 65.78 66.16 65.40 5.22

BN100 LOFT-FOA 64.31 63.37 65.29 4.94
BN100 Ours 66.36 65.90 66.83 4.76

Table 2. The experimental results of datasets with different pro-
portions of XOH and XH samples. As described in the main pa-
per, BNx/y means x% of BONAI trainval samples are of XOH

type and y% are of XH type. The results of LOFT-FOA and our
method trained on BN100 are also listed for better comparison
with our methods trained on datasets composed of both XOH and
XH samples.

3.2. Additional results on footprint segmentation

Fig. 5 and Fig. 6 demonstrate the additional building
footprint segmentation results of four different cities (i.e.
Shanghai, Xi’an, New York, and Hong Kong) from differ-
ent models trained on solely XOH samples. Fig. 7 display
the building footprint segmentation results of two different
cities (i.e. New York and Hong Kong) from LOFT-FOA [10]
and our method trained on datasets containing XOH and
XH samples.

Figure 5. The footprint segmentation results of Shanghai and
Xi’an from models trained on BN100. The first two rows display
the results of Shanghai, and the last two rows display the results of
Xi’an.

Figure 6. The footprint segmentation results of different models
trained on OC100 and BH100, respectively. The first two rows
display the results of New York (OmniCity-view3), and the last
two rows display the results of Hong Kong (HK dataset).



Figure 7. The footprint segmentation results of New York (the first
two rows) and Hong Kong (the last two rows) from LOFT-FOA
and our method trained on OCx and BHx, respectively. Note
that LOFT-FOA|OC30 means the results of LOFT-FOA trained
on OC30.

3.3. Additional offset angle prediction results

Fig. 8 demonstrates the offset angle prediction results of our
method. To aid comprehension, a vector is used to represent
the offset angle, with the vector direction pointing from the
footprint to the roof. For example, a vector pointing hor-
izontally to the right denotes a 0 degree angle, whereas a
vector pointing downwards vertically denotes a 90 degree
angle.

Figure 8. The offset angle prediction results of Shanghai (the first
row) and Xi’an (the second row). The red line with the arrow
denotes the offset angle ground truth, while the blue line with the
arrow denotes the predicted offset angle.

3.4. Failure case analysis

Fig. 9 displays some typical failure cases obtained from our
method. The most common failure cases include: (1) the
mixing up of the building roof and facade (the first column);
(2) inaccurate segmentation of a complex building roof (the
second column); and (3) the misinterpretation of multiple
roofs as one roof, or vice versa (the third column).

Figure 9. Some typical failures of footprint segmentation results.
The yellow, cyan, and red polygons denote the TP, FP, and FN.

3.5. Additional 3D building reconstruction results

Fig. 10 shows additional 3D reconstruction results of four
different cities from our method, alongside their corre-
sponding ground truth. Moreover, in order to demonstrate
the generalization performance of our method in new re-
gions, Fig. 11 shows the 3D reconstruction results of two
new cities, i.e., Shenzhen and Guangzhou. The results indi-
cate that our model has a good generalization performance
in terms of 3D building reconstruction tasks.



Figure 10. The 3D reconstruction results of Shanghai, Xi’an, Hong Kong, and New York.

Figure 11. The 3D reconstruction results of Shenzhen and Guangzhou.
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