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1. Supplementary Videos

In our supplementary material, we also provide videos of
the 3D feature tracking results of our proposed method and
the second-best method DeepEvT [3] + SDE [4] for a better
comparison, as shown in the folder “Comparison Results
Videos”. The predicted feature trajectories are in blue, and
the ground truth feature trajectories are in red. The compar-
ison result videos are 10x slower.

2. Method Comparisons

Our proposed method and dataset mainly focus on the 3D
feature tracking task under high-speed scenarios, i.e., track-
ing long-term feature trajectories with high-speed motions.
Here we explain why we claim that there are no existing
methods that could achieve this task. There are several ap-
proaches that may achieve similar motion estimation, but all
suffer from fatal weaknesses.

Feature tracking methods. Existing feature tracking
methods could predict long-term feature trajectories. With
the aid of event cameras, event-based feature tracking meth-
ods could achieve high-speed feature tracking. However, as
mentioned in the paper, existing event-based feature track-
ing methods could only estimate the 2D feature trajectories
in the image plane.

Optical flow estimation methods. Optical flow estima-
tion methods aim to predict the pixel-wise motion field be-
tween adjacent timestamps instead of long-term motion es-
timation. Therefore, fatal errors will occur when achieving
long-term motion prediction, as shown in our experiments.
On the other hand, similar to feature tracking, there are
some existing event-based optical flow estimation methods
that could predict the high-speed short-term motion field.
However, there is also a lack of 3D event-based optical flow
estimation methods.
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Scene flow estimation methods. There are some ex-
isting scene flow estimation methods that could estimate
3D motion field between adjacent timestamps. However,
these methods also could not achieve 3D feature tracking
under high-speed scenarios. The main reasons lie in two
folds. On the one hand, similar to optical flow estimation
methods, these scene flow estimation methods also focus
on short-term motion prediction and lack of long-term con-
sistency. On the other hand, existing scene flow estimation
methods are mainly based on videos or time-series point
clouds. Therefore, as mentioned in the paper, these meth-
ods could not achieve motion estimation under high-speed
scenarios limited by the frame rate of frame-based cameras
and 3D vision sensors.

To sum up, existing methods either could not handle
high-speed motion or could not achieve long-term consis-
tent feature tracking. Therefore, to the best of our knowl-
edge, we believe that there are no existing methods that
could achieve satisfied 3D feature tracking under high-
speed scenarios.

3. Dataset Processing

This section describes the system setup of our hybrid vision
system and the processing details of our dataset. As men-
tioned in our paper, is it difficult to directly obtain high-
speed 3D feature trajectories due to the limitation of exist-
ing 3D vision sensors. To tackle this challenge, we combine
stereo DAVIS346 event cameras, the Optitrack motion cap-
ture system, and the FARO Quantum ScanArm to obtain
feature-level high-speed 3D ground truth trajectories.

To achieve temporal synchronization, we use a sync ca-
ble to connect both DAVIS346 event cameras. Then, the
timestamps of the event streams from both cameras could
be automatically synchronized. Then, we use eSync 2 to
output the trigger signal of the Optitrack (square wave, rais-
ing edge corresponding to the start exposure time). The
trigger signal could be recorded by DAVIS346 through an-



Figure 1. Some example object point clouds.

other sync cable. Then, the event stream timestamp could

be aligned accordingly based on the Optitrack timestamp.
To achieve spatial calibration, we use a chessboard cal-

ibration board and attached several reflective markers to it.

The calibration processes are as follows:

* Move the calibration board in 3D space and collect
corresponding video and 3D coordinates using time-
synchronized stereo event cameras and Optitrack.

* Perform camera calibration according to the chessboard
to obtain the intrinsic and extrinsic parameters of the
stereo event cameras.

* Perform image distortion rectification and stereo rectifi-
cation for stereo event cameras.

* Obtain the 2D coordinates of the markers from the recti-
fied images. Obtain the 3D coordinates at the same times-
tamp from Optitrack.

* Compute the rotation and the translation vectors from
the world (Optitrack) coordinate system to the camera
coordinate system by minimizing the reprojection error
from 3D-2D marker point correspondences using the non-
linear Levenberg-Marquardt minimization scheme [2].

In practice, for each calibration, we capture 50 seconds of

stereo videos at about 40 FPS using DAVIS346 and the cor-

responding Optitrack spatial coordinates sequence at 250

FPS. We try to cover all positions at different depths in the

camera’s field of view. These data are used to calibrate our

system. To ensure the data quality, we calibrate the system

every day before we start recording .

After the temporal synchronization and spatial calibra-
tion are achieved, we use our system to collect our dataset.
Specifically, we use multiple objects with attached mark-
ers to move in 3D space. Here we further provide the data
processing details.

e Raw stereo event streams, reference frames at the ini-
tial moment, and the spatial coordinates sequence of the
markers of each object are obtained from the stereo event
cameras and Optitrack, respectively.

* Achieve distortion rectification to reference frames and
event streams according to the calibration parameters.
Achieve temporal alignment.

* Calculate the time-series 3D markers’ coordinates se-
quence in the camera coordinate system according to the
rotation and the translation vectors.

* We use FARO Quantum ScanArm to scan the high-
precision object point cloud. The marker attached to the
object is also scanned. In practice, each object point cloud
contains over 2,000,000 points. Figure 1 shows some ex-
ample object point clouds used in our dataset.

* Manually obtain the coordinates of all marker points in
the object coordinate system. Calculate the 3D affine
transform with a homogeneous scale at each timestamp
based on the markers’ coordinates in the object coordi-
nate system and the markers’ coordinates in the world co-
ordinate system (from Optitrack at each timestamp).

» Generate time-series object point cloud sequence in cam-
era coordinate system based on the 3D affine transform.

* Manually obtain the point index in the object point cloud
of each feature. Obtain the time-series features’ coordi-
nates, i.e., feature trajectories, in camera coordinate sys-
tem based on point cloud sequence and feature indexes.

Thus, using our hybrid vision system and data processing
pipeline, high-precision high-speed 3D feature trajectories
could be obtained.

4. Method Details
4.1. Tracking Pipeline

Similar to the previous event-based feature tracking meth-
ods DeepEvT [3] and EKLT [1], the features to be tracked
are provided in the image template patches at the initial mo-
ment £y. In each subsequent timestamp, target features are
tracked using corresponding event patches step by step. It
should be noticed that at the initial moment ¢, the 2D coor-
dinates uy, = (uy,, vy, ) of each target feature are provided.
Therefore, the corresponding event patch could be obtained
based on u¢,. Then, for each subsequent timestamp, the
feature coordinates are predicted from the previous step.
Specifically, for a feature located as w;, = (u¢,,vs,), the
event patch P, is calculated from the events &; triggered in
the d x d patch around u;, and within the time bin [¢;,¢; 1],
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Figure 2. Detailed network architecture of our proposed method. The output channel of each layer is shown in the corresponding box.

formulated as:
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where e, = (t, ug, vk, px) is the k-th events captured by
the event camera.

For the training stage, as mentioned in the paper, we pre-
dict the motion offsets in both camera planes, i.e., Autli and
Autzi , to calculate the stereo motion consistency constraint.
To achieve this, we additionally leverage the coordinates of
the target feature in camera 2, i.e., u?o , at the initial moment
to as input. Therefore, the motion offsets of the feature in
camera 2, ie., Aui, at each timestamp could be obtained
using the offset estimation module. Therefore, the stereo
motion consistency loss could be calculated and leveraged
as the supervision of our model.

In contrast, in the inference stage, our proposed model
only takes the feature coordinates in camera 1 at the initial
moment as input. This is due to the fact that we hope the
3D trajectories of features can be predicted using as sim-
ple inputs as possible in real-world applications. Obviously,
manually obtaining the coordinates of the target feature in
both cameras at the initial moment is not conducive to the
application. Therefore, our method could use the same prior
knowledge as the 2D feature tracking method as input (i.e.,
the feature coordinates in a single camera) to achieve 3D
feature tracking.

4.2. Network Architecture

Figure 2 shows the detailed network architecture of our pro-
posed method. The number in each box denotes the number
of output channels of the corresponding layer. As shown in
the figure, at each timestamp ¢; our proposed method takes
the initial feature template patch I, the deformed template
patch I;,, the event patch Ptli from camera 1, and the event
row patch R7 from camera 2 as input to calculate the fea-
ture position at the next timestamp.

5. Experimental Details
5.1. Metric

We use Feature Age [3] (FR, higher is better), Tracked Fea-
ture Ratio (TFR, higher is better), and Root Mean Squared
Error (RMSE, lower is better) as the metrics. Let TP®d =

N
{X‘t’fed = (2B e, szed)}l X denotes the predicted tra-
jectory of a target feature, where N is the trajectory se-
quence length. The corresponding ground truth is denoted
as T, Feature age is calculated as the ratio of the times-

tamp when the distance between TP and T%' exceeds a
certain threshold c for the first time to the sequence length:

arg min [X§ — Xff’feng > c
3

FA, = ¥ ‘ )

Tracked feature ratio is calculated as the ratio of the total
time that the spatial distance between TP and T#' is less
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Figure 3. Mean tracking error, feature age, and tracked feature ratio of each method in relation to inference time.

than a certain threshold c to the total sequence length:

({1 = X3y < |

TFR, =
N

3)
Different from feature age which only concerns the moment
when TP deviates from T# for the first time, the tracked
feature ratio calculates the total time that TP is close to
T¢' over the complete sequence length. Our motivation for
designing this metric is that we observe that in many cases
the tracking methodology could correct the predicted tra-
jectory even when the error at the initial moment is quite
large.
Root mean squared error is calculated as:

N
> lIXE -
N

red
RMSE = X2

“4)

5.2. Computational Efficiency

Figure 3 shows the computation efficiency of our proposed
method and other baseline methods. We show the (a) mean
tracking error, (b) feature age, and (c) tracked feature ratio
of each method in relation to their corresponding inference
time, respectively. For the mean tracking error (Fig. 3 (a),
lower is better), the bottom left corner represents the goal,
and for the feature age (Fig. 3 (b), higher is better) and
tracked feature ratio (Fig. 3 (c), higher is better), the top
left corner represents the goal. From the figure, we could
observe that our proposed method could significantly out-
perform other baseline methods.

5.3. Ablation Experiments Settings

In our ablation experiment, we test the performance of our
proposed method add or remove the £5™°, motion compen-
sation (MC) module, and the bi-polarity hypergraph-based
high-order correlation modeling (BiIHCM) mechanism, re-
spectively. In practice, the removal of £ is to remove

(a) 2D feature tracking results. (b) Stereo matching results.

Method | FAs T FAiwT RMSE|  Method | MAE| RMSE/|
DeepEvT | 0510 0745 6833 _SPE | 6001 0.140
Ours | 0.673 0844 4888  Ours | 5110  0.113

Table 1. 2D quantitative comparison.

L5 from the total loss function Eq. (10), and use the re-
maining loss function as supervision to train our model. The
removal of MC is to remove the motion compensation mod-
ule and use the initial template patch Iy, to replace I, as
the input of the offset estimation module. The removal of
BiHCM is to remove the bi-polarity hypergraph construc-
tion and replace the hypergraph-based feature aggregation
(Eq. (2)) with a Linear layer, i.e., remove the hypergraph
structure-guided feature optimization and retain © in Eq.
(2), which can show the effectiveness of BIHCM.

5.4. 2D Comparison

Table la shows the 2D feature tracking results of our
method and other existing methods. RMSE and Feature
Age with ¢ = 5,10 pixels are used as the metrics. Ta-
ble 1b shows the stereo matching results of our method and
other existing methods. The Mean Average Error (MAE) of
disparity and the RMSE of back-projection results accord-
ing to predicted disparity and GT 2D feature coordinates
are selected as metrics. From the table, we could observe
that our method could outperform DeepEvT (28.5%) and
SDE (14.8%) individually. Two-stage baselines fail mainly
because of cumulative errors due to lack of consistent con-
straint. Using our joint framework and £°™ could achieve
more remarkable improvements (37.5%).
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