
3D Neural Edge Reconstruction
Supplementary Material

Lei Li1 Songyou Peng1,2† Zehao Yu3,4 Shaohui Liu1 Rémi Pautrat1,6

Xiaochuan Yin5 Marc Pollefeys1,6
1ETH Zurich 2MPI for Intelligent Systems, Tübingen 3University of Tübingen

4Tübingen AI Center 5Utopilot 6Microsoft
neural-edge-map.github.io

A. More Method Details
A.1. Unbiased Density-based Edge Neural Render-

ing

The detailed derivation of Ê along the camera ray r in the
main paper is given as

Ê(r) =

∫ +∞

0

w(t)dt

=

∫ +∞

0

T (t) · σu(t)dt

=

∫ +∞

0

exp

(
−
∫ +∞

0

σu(v)dv

)
· σu(t)dt

=

∫ +∞

0

d

dv

[
− exp

(
−
∫ t

0

σu(v)dv

)]
dt

= 1− exp

(
−
∫ +∞

0

σu(v)dv

)
= 1− T (+∞) .

(1)

Note that this equation occurs in the continuous domain.
To obtain the discrete counterparts of the edge rendering
function, we adopt the same discrete accumulated transmit-
tance approach used in NeRF [8].

Ê(r) = 1−TN , TN = exp

−N−1∑
j=1

σuj · (tj+1 − tj)

 ,

(2)
where N is the number of samples on the ray, TN de-
notes the accumulated transmittance at the furthest sam-
pling point from the camera center, and tj is the j-th sample
on the camera ray r.

As outlined in the main paper, NEF [14] utilizes edge
volume density for representing edges, assigning high-
density values σe for edge points. However, this approach,

† Corresponding author

similar to the naive solution of NeuS [12], does not align the
local maximum of the weight function to the actual intersec-
tion point of the camera ray with the edges (Fig. 1 (a)), lead-
ing to inaccuracies in 3D edge reconstruction. To address
this issue, we incorporate unbiased UDF rendering [7] into
our density-based edge rendering framework, as depicted in
Fig. 1 (b). As mentioned in the main paper, the monotoni-
cally increasing density function σu [7] is formulated as

σu(t) = Ψ(t)·Ωs (fu(r(t)))+(1−Ψ(t))·Ωs (−fu(r(t))) ,
(3)

where Ψ(t) is a differentiable visibility function [7] that
identifies the intersection point of the camera ray with the
edges, and Ωs is a monotonic density function that is intro-
duced in NeuS [12] using the Sigmoid function Φk(x) =(
1 + e−kx

)−1
. The functions Ψ(t) and Ωs are formulated

as

Ψ(tj) =

j−1∏
i=1

(1− h (ti) ·m (ti)) , (4)

m (tj) =

{
0, cos (θj+1) < 0

1, cos (θj+1) ≥ 0
, (5)

Ωs = max

(
−dΦk

dt (fu(r(t)))

Φk(fu(r(t)))
, 0

)
, (6)

where m (tj) is a masking function that masks out the
points behind the intersection point, with θj+1 being the
angle between the ray and the gradient of fu at r(t + 1).
The probability of intersection h(tj) is 1 when the ray at tj
intersects with edges and is given by a logistic distribution
ϕβ(x),

h (tj) = 1− exp (−α · ϕβ (fu (r (tj))) · δj) , (7)

ϕβ(x) = βe−βx/
(
1 + e−βx

)2
, (8)

where α = 20 and β is a learned parameter.

https://neural-edge-map.github.io


Unbiased UDF rendering

Edge

𝝈𝒖 𝒕

𝝎 𝒕

𝒇𝒖 𝒕

𝒕𝒕′

ray

Edge volume density rendering

Edge

𝝈𝒆 𝒕

𝝎 𝒕

𝒕𝒕′

ray

(a) (b)

Figure 1. Illustration of edge volume density rendering (left)
and unbiased UDF rendering (right). In edge volume density
rendering, the weight function does not peak at the intersection
point t′. Conversely, in unbiased UDF rendering, the weight func-
tion’s peak aligns precisely with t′.

Algorithm 1 Point Connection
Input: Set of potential edge points U with position and lo-

cal edge direction, search distance threshold dt, direc-
tion similarity threshold st, and NMS ratio nr.

Output: Collection of edge point groups.
1: while U ̸= ∅ do
2: Select a point p randomly from U and remove p

from U .
3: Initialize a new edge point group G with p.
4: for each direction case: forward (+) and backward

(−) do
5: Initialize an empty list S for storing similarities.
6: for all points p̂ in U within distance dt of p do
7: Calculate similarity sp̂ ← cos(p⃗, ⃗̂p) ·

sign(direction).
8: Append sp̂ to S.
9: Find point p̂i with the highest similarity in S.

10: if sp̂i
> st then

11: Update p to p̂i, remove p̂i from U .
12: Add p̂i to group G.
13: Apply NMS: Remove points from U with

similarity greater than nr · sp̂i
.

14: return the set of all edge point groups formed.

A.2. Point Connection Algorithm

In the point initialization step, we set the UDF threshold to
ϵ′ and normalize the 3D voxel grid to a range of [-1, 1], with
a grid size of M3. In the point shifting step, we perform
T iterations. The point connection algorithm is detailed in
Alg. 1.

In this algorithm, we establish thresholds for search dis-
tance (dt), direction similarity (st), and Non-Maximum
Suppression (NMS) ratio (nr). The process begins with ini-
tializing the set of unvisited points (U) with all potential
edge points. A random target point p is then selected from
U , removed from the set, and added to an edge point group.
We identify adjacent points p̂ from U within the search dis-
tance dt from p. The edge point group, being undirected,

(a) (b) (c)

(d) (e) (f)

Figure 2. Illustration of edge merging. (a)-(c) demonstrate line
segment merging, and (d)-(f) show curve merging. In all cases, the
candidate edges are closely aligned in terms of shortest distance,
with similar line directions or curvatures at their nearest points.

is extended in two subgroups: one extending forward along
the edge direction, and the other extending backward along
the inverse edge direction. For each adjacent point, we com-
pute its similarity (s) with the target point as follows

sj =

{
cos(−→ppj , l(p)), forward
− cos(−→ppj , l(p)), backward

, (9)

where j indexes the adjacent points. The similarity sj is
calculated using the edge direction for the forward case and
the inverse edge direction for the backward case. The adja-
cent point with the highest similarity (si) is selected as the
candidate. If si exceeds st, the candidate point is updated
as the new target point, removed from U , and added to the
edge point group. Redundant points with similarity greater
than nr · si are also removed from U . If si is not greater
than st, the growth of the current point connection halts,
and a new target point is selected from U to initiate a new
edge point group. This process is repeated for each edge
point group, progressively extending it until no further tar-
get points can be added. Finally, we obtain connected edge
points from each edge point group.

A.3. Edge Fitting

As introduced in the main paper, the merging of line seg-
ments and Bézier curves is based on two primary criteria:
the shortest distance (ds) between candidate edges and the
curvature similarity (sc) at their nearest points. Fig. 2 il-
lustrates distinct cases for both line segments and curves.
These criteria ensure that merging occurs only between
closely situated edges with similar features.

B. More Experiment Details
B.1. Implementation Details of UDF Field

We utilize one MLP with an absolute activation function
in the last layer to learn UDF values. Following previous
works [12, 13], we include a skip connection that links the
output of the fourth layer with its input. Positional encoding
is applied using 10 frequencies. Following NeuralUDF [7],
we initially sample 64 points uniformly and then perform
iterative importance sampling five times to refine the sam-
pling based on the UDF values. In each importance sam-
pling iteration, 16 points are sampled. Additionally, we



normalize all scenes into a unit box. This normalization
ensures that the hyperparameters for 3D parametric edge
extraction are generally invariant to the scale of the scenes.
λ in the loss function is set to 0.1 for ABC-NEF dataset, and
0.01 for other dataset.

B.2. Implementation Details of 3D Parametric Edge
Extraction

Similar to LIMAP [6], our parametric edge extraction ap-
proach involves several hyperparameters within each mod-
ule. However, as we normalize all scenes into a unit box
within our UDF field, our default settings typically suffice.
The UDF threshold (σ′) and voxel grid size (M ) are ad-
justed according to scene complexity. For example, we use
σ′ = 0.02 and M = 128 for the synthetic ABC-NEF [14]
dataset, while for other datasets like DTU [1], Replica [11],
and Tanks & Temples [3], we opt for σ′ = 0.01 and
M = 256. We set the point shifting iteration (T ) to 2, which
yields optimal performance, with further details in Sec. C.3.
In the edge direction extraction step, the shift set δN is
randomly sampled from the range

[
−5× 10−3, 5× 10−3

]
with 50 samples. In point connection, the parameters dt,
st, and nr are set to 10

M , 0.97, and 0.95, respectively. For
edge fitting, we require a minimum of 5 inlier points for
robust line segment fitting and at least 4 for Bézier curve
fitting. During edge merging, we apply criteria of ds = 5

M
and sc = 0.98. Endpoints within a distance of de = 2

M are
merged into shared endpoints. Edge refinement is applied
specifically to real-world datasets to mitigate the effect of
noise in the input edge maps.

B.3. Ground-truth Edge Point Generation on DTU

As mentioned in the main paper, the DTU dataset pro-
vides dense ground-truth point clouds that can be further
processed into edge points. To meet multi-view consistent
edge requirements, we select scan 37, scan 83, scan 105,
scan 110, scan 118, and scan 122 as our evaluation scans.
Inspired by [2] that builds edge point matching using the
sparse 3D points from Structure-from-Motion, we generate
edge points by projecting the ground-truth dense points onto
images and then cross-comparing these projections with ob-
servations on 2D edge maps. This process allows us to fil-
ter out points that do not correspond to edges. To ensure
accuracy in the ground-truth edge points, we manually set
thresholds for each scan and meticulously remove any float-
ing points.

C. More Experiment Results
C.1. Edge Representations

We evaluate the effectiveness of SDF and UDF for edge
representation. As illustrated in Fig. 3, the edge map and
normal map rendered using SDF tend to be noisy and lack

(a) CAD Model (b) Edge Map (c) SDF Edge

(d) UDF Edge (e) SDF Normal (f) UDF Normal

Figure 3. Ablation study on SDF and UDF. Representing edges
using SDF leads to blurred edge rendering, as edges do not have
a clear definition of inside and outside. In contrast, UDF is well
suited for modeling edge distance field.

Ratio Acc↓ Comp↓ Norm ↑ R5↑ P5↑ F5↑
a 25% 7.9 8.9 95.3 57.1 64.7 60.3
b 50% 8.8 8.9 95.4 56.4 62.9 59.1
c 75% 7.7 10.3 94.8 53.2 58.3 55.3

Table 1. Ablation studies on ray sampling strategy on ABC-NEF.
Performance metrics for 25% sampling (a) and 75% sampling (c)
are averaged over valid scans only, as 25% sampling results in
invalid outcomes for scan 9685, and 75% sampling is ineffective
for scans 2412 and scan 5109.

precision. This issue primarily arises because SDF render-
ing requires a clear definition of inside and outside, which
edges do not inherently possess. In contrast, UDF excels at
representing both closed and open surfaces in volume ren-
dering, making them more suitable for modeling the edge
distance field. Consequently, UDF-rendered edge and nor-
mal maps exhibit greater precision. In comparison, rep-
resentations based on edge volume density, like those in
NEF [14] that often rely on fitting-based extraction meth-
ods, are more prone to inaccuracies. Therefore, we select
UDF as our edge representation.

C.2. Ray Sampling Strategy

To evaluate the effectiveness of our ray sampling strategy,
we conduct ablation studies on the sampling ratio in Table 1.
The sampling ratio in edge regions is then incrementally in-
creased from 25% to 75%. The results indicate that a 50%
sampling ratio is the only strategy that consistently yields
complete results across all scans, while 25% and 75% sam-
pling ratios fail to reconstruct all scans. Besides, the com-
monly used uniform sampling strategy is largely ineffective,
predominantly due to occlusion-related issues.



Iter. Acc↓ Comp↓ Norm↑ R5↑ P5↑ F5↑
a 0 14.4 9.4 94.3 32.7 26.2 28.3
c 1 9.9 9.0 95.1 49.6 53.8 51.2
d 2 8.8 8.9 95.4 56.4 62.9 59.1
e 3 9.1 9.1 95.4 53.5 59.8 56.1

Table 2. Ablation studies on point shifting iterations on ABC-NEF.

Res w/o point shifting w/ point shifting
Acc↓ Comp↓ F5↑ Acc↓ Comp↓ F5↑

64 15.1 31.3 13.8 8.8 29.0 37.8
128 14.4 9.4 28.3 8.8 8.9 59.1
256 16.5 8.0 24.6 10.5 8.2 55.2

Table 3. Ablation studies on point-shifting with various grid reso-
lutions on ABC-NEF.

Figure 4. A failure case in the large-scale scene. left: RGB
image, right: reconstructed 3D edges.

C.3. Point Shifting Iteration

We conduct analytical experiments to assess the impact of
point-shifting iterations, as presented in Table 2. We empir-
ically find that both accuracy and completeness are maxi-
mized when the iteration count, T , is set to 2. As discussed
in the main paper, the absence of point shifting (T = 0)
results in significantly lower accuracy due to the prediction
of redundant edge points. Conversely, increasing the itera-
tion count (T = 3) leads to a degradation in performance,
attributable to the introduction of noise from over-iteration.

C.4. Point Shifting vs. Grid Resolution.

We perform ablation studies to analyze the effectiveness of
point-shifting step with various voxel grid resolutions. Ta-
ble 3 shows that point shifting consistently boosts the per-
formance across various resolutions. Moreover, increasing
grid resolution does improve completeness, but could harm
accuracy. Additionally, the cubic growth in query points
with higher resolutions leads to a substantial computation
increase.

D. Limitations and Future Work
Our approach successfully achieves comprehensive edge re-
construction across various datasets. However, its applica-
tion to large-scale datasets is somewhat restricted due to our

reliance on edge maps without texture features and the use
of vanilla NeRF [8] MLP, leading to ill-posed reconstruc-
tion scenarios (Fig. 4). Incorporating texture information
or monocular depth maps [15], and applying more pow-
erful volume rendering methods [4, 5, 9] can potentially
enhance our method’s reconstruction capabilities on large-
scale datasets.

Additionally, our method is limited to scenes with only
view-consistent edges. To handle view-inconsistent edges,
one future work is to apply semantic edge detector [10] to
detect those view-inconsistent edges and remove them from
2D edge maps. Alternatively, in our UDF training phase,
we could also add a regularization loss to enforce that 3D
edges maintain consistency across multiple views.

References
[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis,

Engin Tola, and Anders Bjorholm Dahl. Large-scale data for
multiple-view stereopsis. International Journal of Computer
Vision (IJCV), 2016.

[2] Andrea Bignoli, Andrea Romanoni, and Matteo Matteucci.
Multi-view stereo 3d edge reconstruction. In Proc. of the
IEEE Winter Conference on Applications of Computer Vision
(WACV), 2018.

[3] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Trans. on Graphics (ToG), 2017.

[4] Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. Ner-
facc: A general nerf acceleration toolbox. In Proc. of the
International Conf. on Computer Vision (ICCV), 2023.

[5] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Tay-
lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.
Neuralangelo: High-fidelity neural surface reconstruction. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2023.

[6] Shaohui Liu, Yifan Yu, Rémi Pautrat, Marc Pollefeys, and
Viktor Larsson. 3d line mapping revisited. In Proc. of the
Conf. on Computer Vision and Pattern Recognition (CVPR),
2023.

[7] Xiaoxiao Long, Cheng Lin, Lingjie Liu, Yuan Liu, Peng
Wang, Christian Theobalt, Taku Komura, and Wenping
Wang. Neuraludf: Learning unsigned distance fields for
multi-view reconstruction of surfaces with arbitrary topolo-
gies. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2023.

[8] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Proc. of the European Conf. on Computer Vision
(ECCV), 2020.

[9] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. SIGGRAPH, 2022.

[10] Mengyang Pu, Yaping Huang, Qingji Guan, and Haibin
Ling. Rindnet: Edge detection for discontinuity in re-
flectance, illumination, normal and depth. In Proceedings



of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 6879–6888, 2021.

[11] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797,
2019.

[12] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural im-
plicit surfaces by volume rendering for multi-view recon-
struction. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[13] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

[14] Yunfan Ye, Renjiao Yi, Zhirui Gao, Chenyang Zhu, Zhiping
Cai, and Kai Xu. Nef: Neural edge fields for 3d parametric
curve reconstruction from multi-view images. In Proc. of the
Conf. on Computer Vision and Pattern Recognition (CVPR),
2023.

[15] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sat-
tler, and Andreas Geiger. Monosdf: Exploring monocu-
lar geometric cues for neural implicit surface reconstruc-
tion. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.


	. More Method Details
	. Unbiased Density-based Edge Neural Rendering
	. Point Connection Algorithm
	. Edge Fitting

	. More Experiment Details
	. Implementation Details of UDF Field
	. Implementation Details of 3D Parametric Edge Extraction
	. Ground-truth Edge Point Generation on DTU

	. More Experiment Results
	. Edge Representations
	. Ray Sampling Strategy
	. Point Shifting Iteration
	. Point Shifting vs. Grid Resolution.

	. Limitations and Future Work

