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This supplementary material contains the following parts:
• Section 1 shows the generalization of ASAM when transfer it to other SAM-based models, containing HQ-SAM [11] and

SAM-Adaptor [3].
• Section 2 shows more qualitative results of ASAM to show why ASAM can help improve the performance of SAM.
• Section 3 provides more ablation experiment of ASAM, such as using different numbers of images to train ASAM and

using SAM encoders of different scale when training ASAM.
• Section 4 provides more implement details of ASAM.
• Section 5 shows more details of 14 segmentation datasets used in this paper.
We hope this supplementary material can help you get a better understanding of our work.

*Lv Tang is the corresponding author of this paper
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1. Generalization of ASAM

Table 1. HQ-SAM vs. HQ-ASAM on ViT-base backbones.

COIFT HRSOD ThinObject5k-TE DIS5K-VD Average
Methods Year miou ↑ mbiou ↑ miou ↑ mbiou ↑ miou ↑ mbiou ↑ miou ↑ mbiou ↑ miou ↑ mbiou ↑
HQ-SAM NeurIPS2023 76.2 68.2 93.3 88.2 91.6 84.0 84.0 72.1 86.3 78.1

HQ-ASAM 2023 76.6 68.7 94.2 89.2 91.6 84.1 84.9 73.6 86.8 78.9

Table 2. SAM-Adaptor vs ASAM-Adaptor on the camouflage detection dataset.

CAMO CHAMELEON
Methods Year

Sm ↑ Fmean
β ↑ MAE ↓ Sm ↑ Fmean

β ↑ MAE ↓

SAM-Adaptor ICCV2023 Workshop 0.764 0.663 0.119 0.798 0.682 0.082
ASAM-Adaptor 2023 0.798 0.685 0.114 0.803 0.685 0.071

Table 3. SAM-Adaptor vs ASAM-Adaptor on the shadow detection dataset.

ISTD
Methods Year BER ↓

SAM-Adaptor ICCV2023 Workshop 5.44
ASAM-Adaptor 2023 4.58

Our paper aims to utilize adversarial examples to create a version of the SAM that is more powerful than the original,
without altering SAM’s fundamental structure. To this end, we integrate our enhanced version of SAM, obtained through
our ASAM approach, into two other SAM-based models: HQ-SAM [11] and SAM-Adaptor [3]. The results presented in
Table. 1, Table. 2 and Table. 3 demonstrate that our ASAM significantly improves the performance of these two methods on
their respective test samples. This success strongly indicates that the SAM enhanced by our proposed ASAM method can be
directly generalized to other SAM-based approaches. Consequently, this can lead to further enhancement of these methods’
capabilities in specific scenarios. This finding is particularly noteworthy as it suggests that the improvements rendered by
our ASAM are not limited to specific instances or tasks but are broadly applicable to a range of models built upon the SAM
architecture.



2. More Qualitative Results of ASAM
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Figure 1. Some qualitative results where our proposed ASAM is better than SAM.

In Fig. 1, we additionally show the zero-shot segmentation results of ASAM and SAM. The red box represents the input
box prompt. As shown in Fig. 1, our method either significantly outperforms SAM or exhibits a clear difference in accuracy
within the yellow regions.

In Fig. 2, we present additional visualization results to demonstrate how our ASAM effectively enhances the original
performance of SAM. We also attempt to use the generated adversarial examples to illustrate why our ASAM can enhance
the performance of SAM itself. From first three rows of Fig. 2, it is evident that our generated samples make the foreground
and background more similar, which is beneficial for improving SAM’s performance in camouflaged scenes. Moreover,
some of the generated samples in the last two rows of Fig. 2 exhibit more intricate detail structures than the original samples.
The increased complexity and richness in these samples can further aid in enhancing SAM’s performance by training it to
recognize and process more nuanced and subtle features within an image.

These visualizations not only highlight the effectiveness of ASAM in boosting SAM’s capabilities but also provide in-
sights into the kind of adversarial scenarios that are particularly useful for improving model performance in detecting and
segmenting objects in complex visual environments.
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Figure 2. Adversarial examples with low contrast and detailed structural information.



3. More Ablation Experiments of ASAM
3.1. Training ASAM with Different Numbers of Samples.

Table 4. Performance comparison of ASAM using different scale data

Methods Ade20k Voc2012 Cityscapes COCO2017 LVIS Average

SAM 74.7 79.1 54.1 77.5 80.7 73.2
ASAM(1k) 74.9 79.3 56.3 78.0 80.7 73.8
ASAM(3k) 74.7 79.3 55.6 78.0 80.4 73.6
ASAM(5k) 74.8 79.6 55.5 78.4 80.6 73.8
ASAM(8k) 75.4 80.1 55.9 79.1 81.0 74.3
ASAM(10k) 75.5 80.6 56.0 79.4 81.2 74.5
ASAM(13k) 75.3 80.6 55.9 79.3 81.3 74.5
ASAM(15k) 75.6 80.5 56.1 79.2 81.4 74.6

Figure 3. Average miou of ASAM using different scale data.

Herein, we experiment with using varying quantities of adversarial samples to train ASAM, demonstrating its robustness
across different sample sizes. As indicated in Table. 4, even with just 1K adversarial samples, there is a notable enhancement
in SAM’s. Additionally, as the number of samples increases, the performance of ASAM continues to improve. Our primary
focus is on validating the effectiveness of our proposed ASAM method, hence we did not solely concentrate on increasing
the number of training samples.



3.2. Training ASAM with Different backbone.

Table 5. SAM vs. ASAM on various ViT backbones.

Methods Ade20k Voc2012 Cityscapes COCO2017 LVIS Average

SAM(vit-large) 76.4 82.7 54.9 80.7 83.1 75.6
ASAM(vit-large) 77.0 82.8 56.8 81.0 83.2 76.2

SAM(vit-huge) 76.9 82.6 57.0 80.9 83.5 76.2
ASAM(vit-huge) 77.3 82.9 57.2 81.2 83.9 76.5

In the main manuscript, we validate the performance of ASAM on a ViT-base SAM. To further assess the robustness
of ASAM across different backbone architectures of SAM, we train ASAM on various backbones. The results, as shown
in Table. 5, demonstrate that ASAM effectively enhances performance across these different backbone configurations. This
consistency in performance improvement across various backbone architectures is a strong indication of ASAM’s adaptability
and robustness.

3.3. Comparison with model fine-tuning different parameters.

Table 6. Comparison with model fine-tuning different parameters.

Methods Ade20k Voc2012 Cityscapes COCO2017 LVIS Average

Finetune SAM’s Output token 75.7 80.6 56.0 79.4 81.2 74.5
Finetune SAM’s Decoder 71.9 79.4 45.4 74.8 76.6 69.9
Fintune the entire SAM 65.6 77.2 47.5 71.4 75.6 67.5

In Table. 6, we explore the impact of different tuning mechanisms within ASAM on its performance. This exploration
aimed to understand how various adjustments and refinements in the tuning process could affect the overall effectiveness of
ASAM. The results presented Table. 6 indicate that fine-tuning only the output token of SAM yields the best balance between
performance and efficiency.



4. More Details of Adversarial Optimization of Latent.
In this section, we delve into two key aspects of Adversarial Optimization of Latent, specifically focusing on ‘skip grad’ and
‘differentiable boundary processing’. As discussed in Section3.2.2 of main manuscript, we propose an optimization approach
for adversarial latent variables, which can be expressed as follows:

∇x̄T
L(Sθ(x̄T ), y) =

∂L
∂x̄0

· ∂x̄0

∂x̄1
· ∂x̄1

∂x̄2
· · · ∂x̄T−1

∂x̄T
. (1)

Adversarial Gradient Approximation: Upon examining the elements involved, we discovered that while each item is
differentiable, deriving the entire calculation graph is not feasible. Firstly, we analyze the term ∇L

∇x̄0
, which represents the

derivative of the SAM with respect to the reconstructed image x̄0 and provides the direction for adversarial gradients. Then,
each derivative calculation of ∇x̄t

∇x̄t+1
corresponds to a backpropagation calculation. However, a complete denoising process

generates a cumulative number of T calculation graphs, which can lead to memory overflow (similar phenomena are also
found in [16]). Consequently, it becomes impractical to directly obtain the gradient for the denoising process. To address this
challenge, we introduce the gradient approximation of ∂x̄0

∂x̄T
. Drawing upon the diffusion process, the denoising step aims to

eliminate the Gaussian noise introduced during DDIM sampling [7, 15, 17]. DDIM samples xt at any given time step t using
a closed-form reparameterization trick, as shown:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∈ N (0, I). (2)

By rearranging Equation 2, we obtain the following manipulation: x0 = 1√
αt
xt−

√
1−αt

αt
ϵ. Consequently, we have ∂x0

∂xt
=

1√
αt

. Considering that in Stable Diffusion, the timestep t is at most 1000, we can approximate lim
t→1000

∂x0

∂xt
= lim

t→1000

1√
αt

≈

14.58. Therefore, we can treat ∂x̄0

∂x̄t
as a constant ρ, and Equation 1 can be re-expressed as ∇x̄T

L(Fθ(x̄T ), y) = ρ ∂L
∂x̄0

. In
summary, skip gradient provide an approximation of the gradients for the denoising process while reducing computational
complexity and memory usage.



Figure 4. Effectiveness of Differentiable Range Constrain.

Differentiable Range Constrain: The diffusion model lacks an explicit constraint on the value range of x̄0, which can
result in exceeding the permissible range. To address this issue, we introduce the technique of differentiable range constrain
(DRC) τ(·). The τ(·) is to ensure that values outside the range of [0, 1] are constrained within the range of [0, 1] by employing
a specially designed differentiable tanh function. The mathematical expression for DRC is as follows:

τ(·) =


tanh

(
1000x
10000

)
, if x < 0

x, if 0 ≤ x ≤ 1

tanh
(

1000(x−1)
10001

)
, if x > 1

(3)

The image of the function DRC is illustrated in Fig. 4. Our proposed DRC effectively limits the range of values in the image
and guarantees differentiability of the gradient.



5. More Details of 14 Datasets

Table 7. Segmentation datasets used to evaluate zero-shot segmentation with point and box prompts. The 14 datasets cover a broad range
of domains; see column “image type”.

dataset
abbreviation
& link

image
type description

mask
type source split

#image
nums

#mask
nums

Ade20k [19] ADE20k Scenes
Object and part segmentation masks for images from SUN
and Places datasets. Instance Validation 2000 45576

VOC2012 [8] VOC2012 Scenes
A commonly used dataset for object detection and image
segmentation tasks. Instance Validation 1449 3488

Cityscapes [6] Cityscapes Driving Stereo video of street scenes with segmentation masks. Panoptic Validation 500 17656

COCO2017 [13] COCO Scenes
A large-scale object detection, segmentation, key-point
detection, and captioning dataset. Instance Validation 5000 36480

HRSOD-TE [18] HRSOD Saliency
It is specifically designed for high-resolution salient
object detection. Instance Test 400 400

CAMO [12] CAMO Camouflage
A dataset specifically designed for the task of
camouflaged object segmentation. Instance Test 250 250

Big [4] Big Ultral-high resolution
A high-resolution semantic segmentation dataset,
every image in the dataset has been carefully
labeled by a professional.

Instance Test, validation 300 300

DOORS [14] DOORS Boulders
Segmentation masks of single boulders positioned
on the surface of a spherical mesh. Instance DS1 10000 10000

LVIS [9] LVIS Scenes
Additional annotations for the COCO [66] dataset to
enable the study of long-tailed object detection
and segmentation

Instance Validation (v1.0) 5000 52160

ZeroWaste-f [1] ZeroWaste-f Recycling
Segmentation masks in cluttered scenes of
deformed recycling waste. Instance Train 2947 6155

NDISPark [5] NDISPark Parking lots
Images of parking lots from video footage taken at day
and night during different weather conditions and
camera angles for vehicle segmentation.

Instance Train 111 2577

Egohos [2] EgoHOS Egocentric
Fine-grained egocentric hand-object segmentation dataset.
Dataset contains mask annotations for existing datasets. Instance Validation 1124 3792

Plittersdorf [10] Plittersdorf Stereo images
Segmentation masks of wildlife in images taken
with the SOCRATES stereo camera trap. Instance Train, validation, test 187 546

BBC038V1 [2] BBBC038v1 Microscopy
Biological images of cells in a variety of
settings testing robustness in nuclei
segmentation.

Instance Train 670 34064

In Table. 7, we show more details of 14 segmentation datasets used in this paper.

https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://paperswithcode.com/dataset/voc-2012
https://www.cityscapes-dataset.com/
https://cocodataset.org/
https://github.com/yi94code/HRSOD
https://sites.google.com/view/ltnghia/research/camo
https://github.com/hkchengrex/CascadePSP
https://zenodo.org/record/7107409##.ZAzNnOzMJ47
https://www.lvisdataset.org/
http://ai.bu.edu/zerowaste/
https://zenodo.org/record/6560823##.ZAzLlezMJ46
https://github.com/owenzlz/EgoHOS
https://timm.haucke.xyz/datasets/plittersdorf
https://bbbc.broadinstitute.org/BBBC038
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