
Affine Equivariant Networks Based on Differential Invariants

Supplementary Material

A. Proof of Theorem 7
Proof. Since F 0 is a set of bounded functions, the norm

k · ksup is well-defined. 8u 2 F , g 2 G, we have

kJ (·, g · u)ksup = sup
x2X

kJ (x, g · u)k1

= sup
x2X

kw(g)J (g�1 · x,u)k1

= w(g) sup
x2X

kJ (g�1 · x,u)k1 (14)

= w(g) sup
x2X

kJ (x,u)k1

= w(g)kJ (·,u)ksup.

Then we apply the above property of the norm k · ksup to
complete the proof. 8u 2 F , g 2 G,x 2 X , we have

I(g · x, g · u) = 1

kJ (·, g · u)ksup
J (g · x, g · u)

=
1

w(g)kJ (·,u)ksup
w(g)J (x,u) (15)

=
1

kJ (·,u)ksup
J (x,u)

= I(x,u).

Therefore, I is a k-dimensional invariant of G. ⇤

B. Polynomial relative differential invariants
In this work, we implement equivariant networks for

three non-Euclidean groups: the scale group, the rotation-
scale group, and the affine group. Targeting each group, we
first derive its polynomial relative differential invariants up
to order 2, and then compute SupNorm normalized differen-
tial invariants to build the equivariant models. Elements in
the affine group and its subgroups can be represented as g =
(A,b), where A 2 R2⇥2 is invertible and b 2 R2. For the

scale group, A =

✓
CS 0
0 CS

◆
, CS > 0; for the rotation-

scale group, A = CRS ·
✓

cos ✓ � sin ✓
sin ✓ cos ✓

◆
, CRS >

0, ✓ 2 [0, 2⇡); for the affine group, we consider A =
CA · Ã, CA > 0, det(Ã) = 1. Polynomial relative dif-
ferential invariants involved in our models for these groups
are shown in Table 5.

C. Implementation details of models
In this section, we give a detailed description of imple-

mentation of InvarPDEs and InvarLayer.

Estimate
derivatives

Element-wise
addition and

multiplication

Relative
Differential
Invariants

Normalization
Invariants

Figure 4. The implementation process of computing SupNorm
normalized differential invariants (SNDI).

To start with, we introduce the implementation process
of computing SupNorm normalized differential invariants
(SNDI) (see Figure 4). Firstly, we estimate derivatives by
applying derivatives of a Gaussian kernel. We set the stan-
dard deviation � of the Gaussian kernel to 0.99 and choose
the kernel size 7. Secondly, we compute polynomial rel-
ative differential invariants through element-wise addition
and multiplication of the derivatives. Finally, we normal-
ize polynomial relative differential invariants with the same
weight and degree together to obtain SNDIs, where the
computation of SupNorm is implemented by applying Max-
Pooling over those channels that are to be normalized to-
gether.

Conv ConvInvariants
ReLUReLU

Figure 5. The architecture for each layer of InvarPDEs-Net.

InvarPDEs-Net consists of iterative processes of multiple
symmetric PDEs. Each iteration of one evolutionary PDE
can be viewed as a layer of the network, shown in Figure 5.
In each layer, we first compute invariants of the input u(ti)

of this layer, and then perform Conv-ReLU-Conv (denoting
1 ⇥ 1 convolutions as “Conv”). The result is multiplied by
�ti and added to u

(ti), where we set �ti as a learnable
parameter. After passing through ReLU, we obtain the out-
put u(ti+1) of this layer. The iterations of the same PDE
are stacked together, and we connect iterations of different
PDEs through Conv-ReLU, where the input and output di-
mensions of Conv are determined by the dimensions of the
previous and next PDEs, respectively. In our implemen-
tation, we use hyperparameter channel to specify the di-
mension of the first PDE, and the dimension of each sub-
sequent PDE is twice that of the previous one. We use the
hyperparameter iteration to specify the total number of it-
erations of all PDEs, namely the network depth. In each
layer, the input dimension of the first Conv is the same as



Relative differential invariants of the scale group Weight Degree
u[k], (1  k  n) 1 1
u[k]
x , (1  k  n) 1/CS 1

u[k]
y , (1  k  n) 1/CS 1

u[k]
xx, (1  k  n) 1/C2

S 1
u[k]
yy , (1  k  n) 1/C2

S 1
u[k]
xy , (1  k  n) 1/C2

S 1
Relative differential invariants of the rotation-scale group Weight Degree
u[k], (1  k  n) 1 1
(u[k]

x )2 + (u[k]
y )2, (1  k  n) 1/C2

RS 2
u[k+1]
x u[k]

x + u[k+1]
y u[k]

y , (1  k  n� 1) 1/C2
RS 2

(u[k]
x )2u[k]

xx + 2u[k]
x u[k]

y u[k]
xy + (u[k]

y )2u[k]
yy , (1  k  n) 1/C4

RS 3
(u[k]

y )2u[k]
xx � 2u[k]

x u[k]
y u[k]

xy + (u[k]
x )2u[k]

yy , (1  k  n) 1/C4
RS 3

u[k]
x u[k]

y (u[k]
yy � u[k]

xx) + u[k]
xy

⇣
(u[k]

x )2 � (u[k]
y )2

⌘
(1  k  n) 1/C4

RS 3
Relative differential invariants of the affine group Weight Degree
u[k], (1  k  n) 1 1
u[k+1]
x u[k]

y � u[k]
x u[k+1]

y , (1  k  n� 1) 1/C2
A 2

u[k]
xxu

[k]
yy � (u[k]

xy)2, (1  k  n) 1/C4
A 2

(u[k]
y )2u[k]

xx � 2u[k]
x u[k]

y u[k]
xy + (u[k]

x )2u[k]
yy , (1  k  n) 1/C4

A 3
u[k+1]
y u[k]

y u[k]
xx � (u[k]

x u[k+1]
y + u[k+1]

x u[k]
y )u[k]

xy + u[k+1]
x u[k]

x u[k]
yy , (1  k  n� 1) 1/C4

A 3
u[k+1]
y u[k]

y u[k+1]
xx � (u[k]

x u[k+1]
y + u[k+1]

x u[k]
y )u[k+1]

xy + u[k+1]
x u[k]

x u[k+1]
yy , (1  k  n� 1) 1/C4

A 3

Table 5. We present relative differential invariants of the scale group, the rotation-scale group and the affine group for vector functions
u , (u[1], u[2], ..., u[n])> involved in our models.

the number of invariants, and the output dimension is spec-
ified by the hyperparameter hidden channel. The input
dimension of the second Conv is hidden channel, and the
output dimension is the same as the dimension of the PDE.
Batch normalization (BN) is applied after each Conv. For
the final output feature u

(tN ), we perform MP-FC-ReLU-
FC (denoting global spatial Max-Pooling as “MP” and fully
connected layers as “FC”) to obtain the classification result,
where the output dimension of the first FC is fixed at 64.

Invariants Conv Conv

ReLU

Figure 6. The architecture for InvarLayer.

InvarLayer is an equivariant layer extracted and adapted
from the iterative process of a symmetric PDE, which al-
lows for free specification of input and output channel num-
bers, as illustrated in Figure 6. It can serve as a drop-in re-
placement for convolutional networks of various architec-
tures. The layer first computes invariants of the input uin,
and then performs Conv-ReLU-Conv to get the output uout

of the layer. The dimension of uin is specified by the hy-
perparameter channel in. The input dimension of the first

Conv is the same as the number of invariants. Different
from InvarPDEs-Net, the output dimension of the second
Conv is not restricted but is specified by the hyperparam-
eter channel out, indicating the dimension of uout. We
fix the input dimension of the second Conv as channel out
to reduce the number of hyperparameters. We do not in-
clude additional BN in InvarLayer, since usually there are
already BN after convolutional layers in most convolutional
network structures. Given a convolutional network, we re-
place every convolutional layer with InvarLayer by choos-
ing appropriate values for channel in and channel out. If
the convolutional layer has a stride more than 1, we add a
Max-Pooling with an appropriate kernel size before the sec-
ond Conv in InvarLayer.

D. Analysis of computational complexity
We mainly focus on the computational complexity of

computing invariants. As shown in Figure 4, the process
consists of three steps. The first step involves derivatives
estimation using Gaussian kernel convolutions, where both
time and memory usage grow linearly with the input size.
The second step involves element-wise addition and multi-
plication, with time and space complexity also linearly de-
pendent on the input size. The third step, normalization,



Input Size 32⇥ 32 64⇥ 64 128⇥ 128 256⇥ 256 512⇥ 512 1024⇥ 1024 2048⇥ 2048
Memory (MB) 4.16 16.63 66.50 266.00 1064.00 4256.00 17024.00

FLOPs 5.88⇥ 107 2.35⇥ 108 9.41⇥ 108 3.76⇥ 109 1.51⇥ 1010 6.02⇥ 1010 240.79⇥ 1011

Time (ms) 27.39 28.29 29.95 31.30 93.28 361.01 1447.20

Table 6. The memory usage required for model inference, FLOPs, and inference time per image.

is implemented by Max-Pooling, where the computational
complexity is proportional to the input size. Besides, after
computing invariants, subsequent 1⇥ 1 Conv operations in
both InvarPDEs-Net and InvarLayer also exhibit computa-
tional complexity linearly related to the input size. As a
result, the time and space complexity during model infer-
ence grow linearly with the input size. We measure compu-
tational complexity of our InvarLayer used in Section 4.3,
and report the numerical results in Table 6. We utilize torch-

stat to measure the memory usage required for model infer-
ence and the FLOPs, and conduct explicit timing measure-
ments during model inference. As shown in Table 6, both
the memory usage and the FLOPs exhibit linear growth with
the input size. For large input sizes, the explicit inference
time is almost proportional to the input size, while it grows
slowly with small input sizes. This behavior may be at-
tributed to the underlying parallelism and optimizations in
low-level computations.

E. Additional experimental results
Mentioned in Section 4.3, we additionally go back to

the conventional setting, training on affNIST and testing on
affNIST. The results are shown in Table 7. Compared with
results of other models under the same setting, InvarLayer
performs the best again.

Models Accuracy Parameters

ITN [77] 98.91 –
DE-CNNs [73] 99.08 > 2.5M

InvarPDEs-Net (Ours) 97.13± 0.05 373K
InvarLayer (Ours) 99.25 ± 0.08 365K

Table 7. Test accuracy (%) on affNIST after training on affNIST.

F. Details of experiments
For empirical validation, we implement InvarPDEs-Net

and InvarLayer for three non-Euclidean groups: the scale
group, the rotation-scale group, and the affine group. We
conduct classification experiments on image datasets with
different group transformations. In all experiments, we do
not use data augmentation to emphasize the innate equivari-
ance of networks. Models are trained using AdamW with
a batch size of 32 and the CosineLR schedule on a single

RTX 3090. We report the mean test performances of mod-
els, taken at the final epoch, over 6 independent training
runs.

Experiments in Section 4.1 (scale equivariance). For
InvarPDEs, we set hyperparameters as follows: channel =
65, hidden channel = 65, iteration = 16. This
network can actually be viewed as a single PDE. On
both datasets Scale-MNIST and Scale-Fashion, we train
the model for 60 epochs with learning rate 2e-3 and
weight decay 1e-6. For InvarLayer, we incorporate it
into a CNN by replacing convolutional layers. The
architecture is Layer-ReLU-MP2-BN-Layer-ReLU-MP2-
BN-Layer-ReLU-MP7-BN-FC-BN-ReLU-Dr5-FC (denot-
ing InvarLayer as “Layer”, Max-Pooling with kernel size
2 as “MP2” and DropOut with rate 0.5 as “Dr5”), where the
input and output dimensions of the last FC are 256 and 10,
respectively. We modify the channel numbers (1-83-163-
247) to keep the number of parameters almost invariant. On
both datasets, we train the model for 60 epochs with learn-
ing rate 2e-3 and weight decay 1e-6.

Experiments in Section 4.2 (rotation-scale equivari-
ance). For InvarPDEs, we set hyperparameters as fol-
lows: channel = 25, hidden channel = 43, iteration =
16. After the 4th, 8th, and 12th iterations, we ap-
ply Conv-ReLU-MP2 to double the channel numbers.
This network can be viewed as four PDEs stacked to-
gether. On both datasets RS-MNIST and RS-Fashion,
we report the results in Table 3 after training the model
for 60 epochs with learning rate 2e-3 and weight de-
cay 1e-6. For InvarLayer, we incorporate it into a
CNN by replacing convolutional layers. The archi-
tecture is Layer-ReLU-MP2-BN-Layer-ReLU-MP2-BN-
Layer-ReLU-MP7-BN-FC-BN-ReLU-Dr5-FC, where the
input and output dimensions of the last FC are 256 and 10,
respectively. We modify the channel numbers (1-67-132-
199) to keep the number of parameters almost invariant. On
both datasets, we present the results in Table 3 after train-
ing the model for 60 epochs with learning rate 8e-3 and
weight decay 1e-6. If training for 90 epochs, InvarLayer
lifts the accuracy (%) from 93.15 ± 0.21 to 93.40 ± 0.24
on RS-MNIST, as mentioned in the text of Section 4.2. If
replacing the first MP2 with MP4 and replacing Dr5 with
Dr6, InvarLayer lifts the accuracy (%) from 74.51± 0.71 to
76.08± 0.36 on RS-Fashion after training for 90 epochs.

Experiments in Section 4.3 (affine equivariance).
There are two settings in this section: testing on affNIST af-



ter training on MNIST and testing on affNIST after training
on affNIST. In the first setting, we use 50k non-transformed
MNIST images for training and 320k affNIST images for
testing. In the second setting, we use 50k affNIST images
for training and 10k affNIST images for testing. In both set-
tings, we employ the same models and the same optimiza-
tion process. For InvarPDEs, we set hyperparameters as fol-
lows: channel = 45, hidden channel = 45, iteration =
15. After the 7th iteration, we apply Conv-ReLU to double
the channel numbers. This network can be viewed as two
PDEs stacked together. For InvarLayer, we incorporate it
into ResNet-32 by directly replacing all convolutional lay-
ers without modifying the channel numbers. We train both
models for 90 epochs with learning rate 1e-3 and weight
decay 1e-6.


	. Introduction
	. Related works
	. Theoretical framework
	. Basic concepts and notations
	. From symmetric PDE to equivariant network
	. SupNorm normalized differential invariants
	. Extensions of network architecture
	. Implementation
	. Discussion

	. Experiments
	. Scale equivariance
	. Rotation-Scale equivariance
	. Affine equivariance

	. Conclusion
	. Proof of from differential invariants to invariants
	. Polynomial relative differential invariants
	. Implementation details of models
	. Analysis of computational complexity
	. Additional experimental results
	. Details of experiments

