
7. Supplementary Material

Supplementary material includes
• Order Invariant Joint Matching Algorithm
• Implementation detail
• Additional Qualitative results
• Additional baeslines and additional numerical compar-

isons

7.1. Order Invariant Joint Matching Algorithm

Algorithm 1 Order Invariant Joint Matching Algorithm
1: Sort all the nodes in the connectivity graph by the degree

of the target node in descending order.
2: while not all the nodes are assigned do

3: Start with the most connective node as the target
node i and assign it with sign peg.

4: for all neighbor node j of the target node do

5: if j has been assigned with peg then

6: Add (i, j) pair to conflict cache
7: else

8: Assign hole to neighbor node j
9: end if

10: end for

11: end while

12: for all edges e in the connectivity graph do

13: if the two nodes of e have the same label then

14: Add the edge to conflict cache
15: end if

16: end for

17: for all edge=(i,j) in conflict cache do

18: if one of {i, j} is congruent then

19: Assign congruent part with peg
20: else

21: Remove (i, j) from connectivity graph
22: end if

23: end for

The permutation invariance nature of the losses schemes
forbids us to use the ground truth matched pairs, as there lack
of a global rule in the ground truth joint matching annotation
that defines what should be the peg and what should be the
hole. For example, for four chair legs that are connected
to the chair seat, a set of the leg joints are defined as pegs
and the other ones are defined as holes and vice versa for
their mated seat joint. In the Figure 5, the four legs are
geometrically interchangeable. However, the ground truth
joint matching annotation defines the front right leg, part 2,
and its corresponding seat joint are connected via leg-peg
and seat-hole joint pair. The front left leg, part 4, and its
corresponding joint is connected via leg-hole seat-peg joint
pair. These ground truth matching scheme prevents the chair
legs to be interchangeable if the network predict the reversed

placement for the two legs, as the matching rule defines that
only different type of joint can be mated. For example, if
part 2 is now in place of part 4, which means that the leg-peg
and seat-peg are now placed next to each other.

1

3

4

2

5

0

6
7

89

1

3

4

2

5

0

6

7

8
9

11

10 10

11

a) Part Graph Nodes b) Joint-wise Connectivity Part Graph

Figure 5. Example joint-wise connectivity graph for a ShapeNet
Chair

A second problem is with part joints that are very close
to each other on the same part for example the back legs of
the example chair in Figure. 5 has three joints in the same
area, and all of them needs to be the same type, so that there
is a signal that tells the network that they cannot be jointed,
because otherwise these joints that are always very close to
each other regardless of the part pose prediction. Yet, simply
defining joints from the same part to be of the same sex does
not do the job, as it will fail when there are loops in the joint
graph, especially with odd element loops. For example, part
0, part 9, and part 10. If part 0 is defined to be a peg part,
then part 9 and part 10 will simultaneously become hole
parts. However, part 9 and part 10 are connected to each
other, thus this simple scheme does not work in such cases.
We introduce the Order-Invariant Joint Matching Algorithm
that first leverage graph traversal to assign joint-type in a
part-wise manner then deals with the conflicted assignment
separately, as shown in Alg. 1.

7.2. Implementation Detail

Our Method. We organize our input joint peg-hole
points J = {jp,hi }Mi=1 as ternary mask {mp,h

i }Mi=1,m
p,h
i 2

{�1, 0,+1} for the part point clouds P = {pi}Ni=1, pi 2 R3,
where the mask values of �1 denotes the peg points, +1
for hole points, and 0 for non-joint point. Applying each
joint mask to its parent part point cloud J p = {pjointi =

(pi;m
p,h
i )}2Mi=1 forms 4-dimensional point cloud contain-

ing information of both joint points and geometry of the
part Pj = [ni

t=1{p
joint
t }. All message-passing modules

f
v

e�!, f
e

v�!,, relationship reasoning modulesf
v

r�!, f
r

v�!,and
pose prediction modules fpose are modled using Multi-Layer
Perceptron (MLP) with hidden dimension of 128. We predict
part poses q 2 R7, composed of a unit 4-dimensional quater-
nion rotation vector and a 3-dimensional translation vector.
A design choice was made for �qi,t such that translation
�ti,t is cliped at a small range between [0.0, 0.01]. Empir-



ically, setting �Ri,t to sample from a set of flip directions,
e.g. ⇡/4,⇡/2, ... improves performance.

Following [26], we define Lshape as a weighted combi-
nation of local part translation loss Lt, rotation loss Lr and
the global shape structure loss Ls. Empirical evidence has
shown that parameter values of {�1 = 1.0,�2 = 10.0,�3 =
1.0} produce the best results. We define our joint loss Ljoint

to be a weighted combination of L2 distance between the
means of the matched joints LjL2, Chamfer distance of
matched joint points Ljcd as well as local part L2 rotation
loss LrL2. Empirical evidence has shown that parameter
values of {�4 = 1.0,�5 = 5.0,�6 = 1.0} produce the best
results.

Baselines. We follow the same implementation scheme
used in [12, 15] for B-Complement, B-LSTM, B-Global,
B-GNN, using the official code release provided by Huang
et al. [15]. For B-NSM, we use the official code release
by Chen et al. [7], and we modify the attention module in
transformer. As the original setting only considers two parts,
and the original attention module used in [7] compares the
feature vectors of the two parts. Since we tackle a multi-part
multi-joint setting, where different shapes contain various
number of parts and different parts contain various number
of joints. Directly applying pair-wise attention on all possi-
ble pairs between all parts and all joints is computationally
inefficient. Therefore, we encourage implicit relationship
reasoning using self-attention by applying the same attention
module on feature vectors compressing all parts and joints
information of a given part set.

B-Joinable modifies the original method [48] to take point
cloud data of multiple parts. We preserve the geometry
encoding and joint-axis prediction philosophy of the original
method. We encode part point cloud data and predict a 3
DOF axis for each matched joint. The predicted joint axis is
used to further predict the 6 DOF poses for each part. The
contact B-Rep joint loss functions proposed by Willis et al.
has similar objectives to our joint losses for point clouds.
In addition to the setting of imposing our loss functions,
we also experimented with supervising for joint axis. We
add additional supervision signal calculated from contact
joints normals. Empirically, we discover this additional
supervision signal hurts performance. Because without the
correct pairing of joints, the joint axis signal add noise to
the supervision. In our paper, we report the best performing
scenario for our task.

We train and test all baselines and our method using
a work station equipped with 16-core AMD CPU, and 2
NVIDIA 3090 GPU. All methods are trained to full conver-
gence for 18 hours. More details on our data and method
can be found here: https://github.com/AntheaLi/multi-joint-
assembly

7.3. Additional Qualitative Results

Additional qualitative examples shown in Figure 6.

7.4. Additional Baseline Comparisons

We also compare our work with the suggested [51] and
[44]. Wu et al. [50] focuses on part equivariant simple shape
(8 parts max) asembly and does not look at joints. We
repurpose the method to tackle our task . SPSM [44] tackles
a different task. It is a generative model that assumes known
connectivity graph to generate diverse shapes, whereas we
try to solve for a connectivity graph for a given set of parts.
Reformulating [B] to tackle our task is non-trivial, we use
their proposed sequencing then optimizing scheme. We
show the comparison results of B-VNN and B-SPSM with
our method in Table. 4 Our task data uses more complex
shapes of 20 parts and 50 joints

In addition to these two baseline methods, we also pro-
vide the baselines’ performance with our joint-aware part
input but use their original losses, shown in Table 4. We
notice that the baselines perform the worst under this set-
ting. We think that adding the joint input does not help the
baselines to implicitly infer structured connectivity. Instead,
without explicitly joint-centric loss design, the joint informa-
tion is treated as noise by the baseline methods. This results
in decreased baseline performance. Additionally, we also
notice that baseline dynamic [15] exhibit the lowest perfor-
mance on the Cabinet category, and cannot infer reasonable
pose predictions.The Cabinet category is not included in its
original experiments.

https://github.com/AntheaLi/multi-joint-assembly
https://github.com/AntheaLi/multi-joint-assembly


B-LSTM B-Complement B-Global Ours Ground TruthInput B-Dynamic

Figure 6. Qualitative comparison of our method and baselines in their best performing setting, their original setting.



Shape Chamfer Distance # Part Accuracy " Joint Chamfer Distance # Joint Accuracy "

Setting Method Chair Table Cabinet Chair Table Cabinet Chair Table Cabinet Chair Table Cabinet

Original Setting

B-Global 0.015 0.013 0.008 32.8 30.1 33.6 0.712 0.847 0.667 13.4 15.8 10.7
B-LSTM 0.017 0.026 0.007 39.4 22.5 44.4 0.756 0.728 0.651 17.0 13.2 14.8

B-Complement 0.028 0.034 0.222 11.0 5.33 0.0 0.901 0.977 1.074 7.54 8.30 23.6
B-VNN 0.468 0.629 0.470 14.1 11.0 7.7 0.618 0.711 0.691 12.1 11.6 13.2
B-GNN 0.007 0.008 0.006 65.3 61.4 45.0 0.725 0.855 0.683 24.4 30.0 18.6

Our Input Setting
(joint input)

B-Global 0.076 0.031 0.028 3.9 12.4 5.7 1.724 1.239 1.281 3.2 4.8 2.7
B-LSTM 0.028 0.039 0.010 7.3 3.8 27.2 0.777 0.708 0.661 8.7 15.1 6.7

B-Complement 0.055 0.047 0.015 2.9 7.2 15.8 1.413 1.004 0.767 5.9 6.5 10.1
B-GNN 0.046 0.076 0.035 4.3 2.1 3.8 0.547 1.120 0.639 15.4 8.1 7.8

Our Full Setting
(joint input and loss)

B-Global 0.029 0.022 0.013 5.4 12.0 15.0 0.513 1.268 0.488 12.7 4.0 6.9
B-LSTM 0.037 0.029 0.017 4.4 4.1 15.3 0.394 0.875 0.467 20.3 7.7 13.8

B-Complement 0.048 0.044 0.029 4.5 8.0 11.6 0.456 0.647 0.503 17.2 15.5 17.0
B-SPSM 0.056 0.055 0.037 4.1 6.4 9.7 0.601 0.624 0.682 18.3 13.6 21.4
B-VNN 0.023 0.025 0.016 4.2 3.9 9.4 0.468 0.629 0.470 14.1 11.0 7.7
B-GNN 0.034 0.039 0.021 11.5 3.2 10.4 0.379 0.786 0.416 21.5 10.3 20.0

Ours 0.006 0.007 0.005 72.8 67.4 63.3 0.352 0.602 0.620 57.2 50.6 27.5

Table 4. Quantitative comparison between our approach and the baseline methods.


	. Introduction
	. Related Work
	. Method
	. Experiments
	. Dataset
	. Baseline Methods
	. Evaluation Metric
	. Results and Analysis

	. Conclusion and Future Work
	. Acknowledgement
	. Supplementary Material
	. Order Invariant Joint Matching Algorithm
	. Implementation Detail
	. Additional Qualitative Results
	. Additional Baseline Comparisons 


