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In Appendix A, we present more quantitative results for a better evaluation of the proposed method. Then, we complement
more qualitative results in Appendix B for more intuitive comprehension and comparison. Finally, in Appendix C, we provide
more implementation details.

A. More Quantitative Results

Table A. Experiments results of GTA-LiDAR [6] → SemKITTI [1] with SqueezeSegV2 as backbone.

Methods Car Pedestrian mIoU
SqueezeSegV2 [6] 63.2 12.8 38.0
ePointDA [8] 70.7 12.9 41.8
SqueezeSegV2 + CCL (Ours) 74.3 13.8 44.1

Table B. Comparison with CosMix following their setup on SynLiDAR → SemanticKITTI.
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mIoU
ADDA [4] 52.5 4.5 11.9 0.3 3.9 9.4 27.9 0.5 52.8 4.9 27.4 0.0 61.0 17.0 57.4 34.5 42.9 23.2 4.5 23.0
Ent-Min [5] 58.3 5.1 14.3 0.3 1.8 14.3 44.5 0.5 50.4 4.3 34.8 0.0 48.3 19.7 67.5 34.8 52.0 33.0 6.1 25.8
ST [9] 62.0 5.0 12.4 1.3 9.2 16.7 44.2 0.4 53.0 2.5 28.4 0.0 57.1 18.7 69.8 35.0 48.7 32.5 6.9 26.5
PCT [7] 53.4 5.4 7.4 0.8 10.9 12.0 43.2 0.3 50.8 3.7 29.4 0.0 48.0 10.4 68.2 33.1 40.0 29.5 6.9 23.9
ST-PCT [7] 70.8 7.3 13.1 1.9 8.4 12.6 44.0 0.6 56.4 4.5 31.8 0.0 66.7 23.7 73.3 34.6 48.4 39.4 11.7 28.9
CosMix [3] 75.1 6.8 29.4 27.1 11.1 22.1 25.0 24.7 79.3 14.9 46.7 0.1 53.4 13.0 67.7 31.4 32.1 37.9 13.4 32.2

CosMix + CCL (Ours) 77.2 8.1 33.3 26.4 14.2 23.3 43.3 25.6 83.1 16.1 44.3 4.1 55.0 13.6 70.0 31.9 33.3 36.8 16.1 34.5

First, following [8], we conduct experiments on GTA-LiDAR → SemKITTI for a fair comparison with previous works.
Inferred from Table A, we can observe that our method maintains its superiority against previous solutions, which is generally
consistent with the gain achieved on the main benchmarks.

Analogously, in Table B, we present a more comprehensive comparison with CosMix [3], where integrate the proposed
module into their proposed setup and framework. Apparently, our method outperforms it with a noticeable margin, i.e.,
+2.3% mIoU, which further validates the effectiveness of the proposed approach.

B. More Qualitative Results.
In Fig. A, we provide more qualitative results on the validation set of SemKITTI [1] and compare them with a representa-

tive solution, i.e., CoSMix, to allow a more intuitive comprehension and comparison.
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Figure A. More qualitative results on the validation set of SemKITTI [1].



C. More Implementation Details
Here we detail the implementation details for previous solutions.
CBST. It is trained for two stages, i.e., the source-only training stage and the adaptation stage. The first stage trains on

source samples only with the supervision loss. In the adaptation stage, the initial proportion for assigning pseudo labels is 10
%, and increases by 5 % every round, with 10 rounds in total. Each round consists of 5 epochs.
AdaptSeg. The weight for the adversarial training is 1e-3, and the objective for the domain adversarial training is the

same as LSGAN [2] rather than the original form as we found its better stability for this adaptation task. The loss is imposed
with feature embeddings of two domains, i.e., output of the feature extractor and before the classifier.
PLCA. We adopt the original configuration according to their code, including the hyper-parameters.
MMD. We impose the MMD alignment loss on the feature space of two domains, with the weight of 0.01.
SqueezeSegV1. Following their paper and official code, we collect the frequency of noises for each spatial location in

the 2D images projected with the spherical projection. Then we leverage the frequency map to guide the dropout on source
samples as the input space, so as to mitigate the gap.

SqueezeSegV2. As SynLiDAR already provides the intensity channel, we adopt its domain alignment loss, i.e.,
geodesic correlation alignment with the same weight.

LiDAR-NET. We adopt its official code and report the results on the two benchmarks.
CoSMix. As a data augmentation technique, we integrate it into the preprocessing procedures, which is performed before

the spherical projection.
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