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In this supplementary material, we provide more details
and experimental results. Specifically, we further explain
the process of the visual sounding object localization model
and the object-aware upmix model in Section 1. We provide
an additional baseline for binaural generation and localiza-
tion and introduce the equations of evaluation metrics in
Section 2. Furthermore, the audiovisual correlation analysis
and more quantitative and qualitative results of the baseline
model and our approach are demonstrated in Section 3. In
qualitative results, we provide more visualized examples,
including differential spectrograms, waveform envelopes,
and sounding object localization. Finally, the generated bin-
aural audio of our approach and the compared methods can
be viewed in the video in supplementary materials.

1. Details of Localization and Upmix Models

In this section, we provide more details about the proposed
localization model and upmix model. Firstly, we introduce
the Audio Network and Visual Network in the localization
model. Then,we explain the object-scene awareness mod-
ule and the semantic-spatial mining module. Finally, we
describe the upmix model.

Audio Network. We employ the short-time Fourier trans-
form (STFT) [4] to convert the raw mono waveform signal
into a Mel spectrogram. Then, we utilize a pre-trained VG-
Gish [3] to extract spectrogram features and serve as input
to the visual sounding object localization model. During the
training phase, the model’s weights are frozen.

Visual Network. We utilize the pre-trained ResNet-18 [2]
to extract the visual features of the center frame of the video
chunk. To extract specific features, the visual encoders of
the generation and localization models are separated. The
weights of the visual network are not frozen to obtain fine-
tuned visual features for localization and generation.
Object-Scene Awareness Module. The extracted spectro-
gram features are input into two fully connected layers and a
normalization layer to obtain the final spectrogram features
for. Taking positive visual features as an example, the same
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goes for negative visual features. The extracted positive vi-
sual features are fed into a normalization layer after spatial
aggregation, obtaining the final positive visual features f;,,.
Then, the visual object features and the pseudo-visual ob-
ject features are obtained through Eq. (5) and Eq. (6) in the
main text. Finally, the visual object features are input into
two fully connected layers and resized to meet the needs of
interaction with the final spectrogram features.
Semantic-Spatial Mining Module. The process for the
SSM module and the OSA module is the same. The only
difference between them is that the number of input and
output nodes in the fully connected layer of SSM is twice
that of OSA because the input is binaural audio.
Object-Aware Upmix Model. The upmixing model and
the localization model are integrated into a framework for
unified training. The rest network structure of the upmix
model generally follows [5], which consists of 3 residual
blocks, each block has m=10 dilated convolutional layers
[7]. In the inferencing, mono audio of length L and the cor-
responding image sequence are intercepted to obtain visual
sounding objects by the localization model. The sound-
ing objects are injected into the upmix model to provide
object-level guidance information. Then, sample zr from
p(zr) ~ N(0,I) and run the fusion and reverse procedure
to obtain a clean differential audio. Finally, binaural audio
is generated through Eq. (3) in the main text.

2. Details of Additional Baseline and Metrics

In this section, we provide an additional baseline for bin-
aural localization and generation. In addition, we introduce
the evaluation metrics of this paper in detail, which provide
a comprehensive evaluation of binaural audio.

Additional Baseline. A randomly sampled positive audio-
visual pair is {V;, A}, and then a negative audiovisual
pair is regarded as {V;, A,,;}, where A,,; represents the
i-th mono audio, ¢ # j. Next, pre-trained ResNet-18 [2]
is used to extract visual features f,. At the same time, pre-
trained VGGish [3] is used to extract positive audio features
fpa and negative audio features f,,,, respectively. The vi-



sual object feature f! can be obtained through:

ftl;:fv'a((fv)T'fpa)- (D

Then, the distance between positive and negative sample
pairs is obtained by

(de,d_) = (I1F] = fpally I1f) = fralla)- @

Finally, the baseline model can be optimized by
L= (D+,D-) = (0, )], 3)

In the main text, six evaluation metrics are used to com-
prehensively evaluate binaural audio generated by different
methods, including STFT Distance [1], Envelope (ENV)
Distance [6], Wave L2 (WAV) [9], Amplitude L2 (AMP),
Phase L2 (PHA), and Signal-to-Noise Ratio (SNR) [8].
STFT Distance: It measures binaural audio on the spec-
trogram domain, which is the Euclidean distance between
the predicted left and right channel spectrograms and their
ground-truth:

Dg = ||Sll> - S*éHz + HSIT; - sz “)

ENV Distance: It measures binaural audio on the raw
waveform domain, which is the Euclidean distance between
the envelope of the predicted waveform’s left and right
channels and its ground-truth:

Dp = | E[A}] - E[Ai]ll, + | E[47] - E[4]]ll,, ()

where E[-] denote the envelope of signal. It can capture the
perceptual similarity of the waveform well.

Wave L2: It is the mean squared error between the pre-
dicted binaural audio and the ground-truth binaural record-
ing.

Ly = (A - AP+ (A5 - A2 ©)
Amplitude L2 and Phase L2: Amplitude L2 and Phase L2
are the mean squared errors between the predicted binaural
audio and the real binaural recording on the amplitude and
phase after STFT on the waveform:

25 = (1S - 1S4)% + (551 - 1502 )
and
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where |-| and Z(+) denote the modulu and phase angle of the
complex number, respectively.
Signal-to-Noise Ratio: It is the power ratio of a signal to
noise. Signal refers to the ground-truth binaural recording,
while noise refers to the differential between the ground
truth and the predicted signal.
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Method Distance| Accuracy(%)T
Additional Baseline 0.083 92.8
Ours 0.028 96.1

Table 1. Quantitative results of baseline model on sounding object
localization.

Method STFT| ENV] WAV
Additional Baseline 0.799 0.129 5.328
Ours 0.779 0.128 5.200

Table 2. Quantitative results of baseline model on binaural audio
generation.

We evaluate the performance of the localization model
using audiovisual distance and classification accuracy on
the entire testset. Note: We counted the results of all 0.1s
sliding windows for each 10s clip in the testset. We simulta-
neously sample positive audiovisual pairs and negative au-
diovisual pairs to compute the audiovisual distance between
them. We employ a softmax function to scale the distance
between the audio and visual features to 1.0. Ideally, the
distance D of positive audiovisual pairs should tend to 0.0,
while the distance D_ of negative audiovisual pairs should
tend to 1.0:

distance = ||(D4,D-) — (0,1)], . (10)

When the audiovisual distance < 0.5, we determine that
the audiovisual pair predicted by the model is paired. Oth-
erwise, it is unpaired. Then, the classification accuracy of
the localization model can be expressed as:

TP+TN
2x (TP+FN)’
where T'P and T'N refer to the number of correctly pre-

dicted pairs and non-pairs, respectively. F'N represents the
number of pairs predicted to be non-pairs.

(1)

accuracy =

3. Audiovisual Correlation Analysis and More
Quantitative and Qualitative Results

In this section, we first present the quantitative and qualita-
tive results of the additional baseline. Then, we analyze the
correlation between audio and visual modalities under the
baseline model and our approach. Finally, more visualiza-
tion results are employed to demonstrate the superiority of
our approach.

Baseline Model Results. Table 1 shows the comparison
results between the additional baseline and our method on
sounding object localization. It can be seen that our method
outperforms the additional baseline in both audiovisual dis-
tance and classification accuracy. In Fig. 5, the first col-
umn shows the qualitative results of the additional baseline
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Figure 1. Audiovisual correlation analysis of baseline model.

model. Compared to the additional baseline, our method
achieves better localization performance. Further, we com-
bine additional baseline with our upmix model to generate
binaural audio. The generation results of the additional
baseline are shown in Table 2. It can be seen that our
method outperforms the baseline model in binaural audio
generation. This demonstrates that good localization results
can improve binaural audio generation performance.
Audiovisual Correlation Analysis. To intuitively observe
the ability of different losses and modules to correlate ob-
jects and sounds, we performed an audiovisual correlation
analysis. Specifically, we randomly select 10 positive au-
diovisual samples from the testset, where each positive sam-
ple corresponds to 9 negative audiovisual samples. We ob-
tained a total of 100 audiovisual sample pairs. Then, we
compute and visualize the distance between audio and vi-
sual modalities, as shown in Fig. 1 and Fig. 2. When i=j7,
the audio and visual samples are positive pairs, and the rest
are negative samples. Fig. 1 shows the correlation analysis
results of the baseline model. It can be seen that the correla-
tion of positive audiovisual samples output by the baseline
model is greater than 50%. However, its confidence level is
not high. Fig. 2 shows the correlation analysis results of our
method under different losses. Compared to the baseline
model, our method can better correlate sounds and objects
and be more discriminative (see Fig. 2 (a) and Fig. 2 (b)) .
In addition, it can be seen from Fig. 2 (c) that the combina-
tion of 17 and I?*/ can further enhance the correlation of
positive audiovisual samples and suppress the correlation of
negative audiovisual samples.

More Qualitative Results. We present more qualitative re-
sults in Fig. 3, Fig. 4, and Fig. 5. Fig. 3 and Fig. 4 show
the visualization results of our method and other methods on
spectrogram and waveform, respectively. Fig. 5 shows the
visualization results of additional baseline, proposed losses,
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Figure 2. Audiovisual correlation analysis of our approach.

and modules on sounding object localization. Overall, com-
pared with other methods, our method shows superior bin-
aural generation and localization performance.
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Figure 3. More qualitative results for audio differential spectrograms.
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Figure 4. More qualitative results of binaural waveform envelopes. The left and right columns represent the left and right channels,
respectively.
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Figure 5. More qualitative results of the sounding object localization model.
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