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Supplementary Material

Overview
In the supplemental document, we first report additional
studies in Sec. A of our proposed depth normalization, neu-
ral color renderer, and the performance of previous meth-
ods on fast grid-based backbones. Then, we describe the
details of our implementation and dataset settings in our ex-
periment in Sec. B. Finally, we discuss the limitations and
future work of our method in Sec. C. More results can be
found in our supplementary video.

A. Additional Results
A.1. Ablation Study on Depth Normalization

To better illustrate the roles of our Local and Global Depth
Normalization, we conduct an additional ablation study and
replace the L2 loss function with L1 to avoid its reduction
of small losses. The quantitative visualization results are
shown in Table 1 and Figure 1. In the comparison, we sep-
arately apply the Global and the Local one to illustrate the
strengths and weaknesses of each: 1) Although the global
one can also individually support the model to learn an over-
all scene, it is weak in optimizing minor errors, as we have
discussed in Sec.3.3. 2) The local one can not stand alone
due to the lack of absolute scale, but provides rich infor-
mation on local depth changes. 3) By combining both tech-
niques, our Global-Local Depth Normalization can simulta-
neously obtain the knowledge of both global scale and small
local errors and achieve the best. Notably, since a differ-
ent type of loss is used in this study, the scores vary from
those reported in the main paper. Despite this, our method
still performs well particularly in LPIPS and SSIM, which
demonstrates the robustness of our depth normalization.

Setting PSNR↑ LPIPS↓ SSIM↑ AVGE↓
Only Global 18.32 0.309 0.579 0.144
Only Lobal 17.17 0.338 0.523 0.167
All 18.67 0.291 0.595 0.137

Table 1. Additional Ablation Study on Depth Normaliza-
tion. Combined with both two proposed depth normalizations,
our Global-Local Depth Normalization achieves the best quality.

A.2. Ablation Study on Neural Color Renderer

In this work, we replace the spherical harmonic (SH) of 3D
Gaussian Splatting with a neural color renderer to represent
the direction-variant color. To better illustrate the function
of this module, we compare it to the original SH function

Figure 1. Visualization of two proposed Depth Normalization.
The color and depth map of the input view and synthesized novel
view are shown in (a) and (b). The global one provides a global
view of the whole scene, however, is weak in handling small local
errors (white box), which causes blurry and wrong appearances
(yellow box). In contrast, the local one is more sensitive to local
depth changes. By combining both of them, our method can learn
a more accurate scene geometry. Zoom in for better visualization.

Figure 2. Visualization of two proposed Depth Normalization.
In sparse-view situations, SH may produce inconsistent colors in
unseen views (yellow arrow) due to overfitting, which can be re-
lieved by a neural color renderer.

with different degrees in the LLFF dataset with 3 training
views. The results are in Table 2 and Figure 2. The SH
function is easy to overfit in the sparse-view situation and
results in some strange colors during view changing. This
may be caused by the independence of each primitive which
leads to a lack of regional consistency. After introducing
the neural color renderer, the problem has been relieved. By
storing the intermediate result and only calculating the latest
two MLP layers, we can maintain a fast rendering speed
competitive to SH as well.

A.3. Transfer of Previous Strategies

In this section, we conduct an experiment to illustrate the
necessity of our efficient DNGaussian. Indeed, there are
some existing methods like FreeNeRF [21] and SparseN-
eRF [18] that are low in efficiency mainly due to their back-
bone rather than the strategy itself. However, they have only

https://www.youtube.com/watch?v=WKXCFNJHZ4o


Figure 3. Visualization of the implicit-based SOTA methods SparseNeRF (S) [18] and FreeNeRF (F) [21] when transferred to fast back-
bones Instant-NGP (iNGP) [10], TensoRF [3], and 3D Gaussian Splatting (3DGS) [8]. The depth-based SparseNeRF causes blurry ren-
dering on all fast backbones, while FreeNeRF has less effect on the improvement of quality. Instead, our DNGaussian achieves the best
quality on the most efficient 3DGS backbone, which shows the necessity of our method.

Setting PSNR↑ LPIPS↓ SSIM↑ AVGE↓ FPS

SH degree=2 17.06 0.333 0.549 0.167 340
SH degree=3 17.11 0.328 0.560 0.164 300

Neural Renderer 19.12 0.294 0.591 0.132 300

Table 2. Ablation Study on Neural Color Renderer. Our neural
color renderer successfully improves the rendering quality while
keeping an equally fast inference speed.

already been proven effective for some implicit backbones
that are slow and costly. To verify whether they can di-
rectly transfer to faster backbones to achieve higher effi-
ciency, we implement these two methods on two fast grid-
based Instant-NGP [10] and TensoRF [3]. Also, we do this
on our 3D Gaussian Splatting (3DGS) [8] backbone. Then,
we test these implementations in the LLFF 3-view setting.
The results are shown in Table 3 and Figure 3. Additionally,
we report the training time (Time), GPU memory cost (VM
Cost), and the inference FPS for each item.
Implementation details. We utilize a CUDA-implemented
ray marching 1 for the two grid-based backbones to achieve
faster speed and lower costs. The 3DGS backbone employs
the same neural color renderer as our method. We follow the
original implementation of SparseNeRF to produce monoc-
ular depth maps for all input views and transfer its Local
Depth Ranking Distillation to these new backbones with
the same hyperparameters. For FreeNeRF, since the three
fast backbones do not contain a frequency-based positional
encoding, we apply the Frequency Regularization to their
grid-based positional encoding as an alternative.
Comparison on grid-based backbones. Although these

1https://github.com/ashawkey/torch-ngp

two methods perform well on their original implicit Mip-
NeRF, they are weak in both Instant-NGP and TensoRF.
SparseNeRF distills the depth ranking from the monocular
depth map for regularization, however, causes more blurs.
This may be caused by the stronger spatial memory abil-
ity from the explicit grids that makes it easier to memo-
rize noises. FreeNeRF performs even worse on both these
two backbones, which may be due to the different represen-
tations of positional encoding. In TensoRF, all these two
strategies fail to improve performance. One reason may
lie in that TensoRF directly utilizes explicit grids without
a neural decoder to store density value, which is more diffi-
cult to regularize.
Comparison on 3DGS. In the comparison, the 3DGS back-
bone achieves the best efficiency, with the fast FPS and low-
est training cost. However, both SparseNeRF and FreeN-
eRF cannot effectively regularize this powerful and efficient
backbone. Due to the lack of frequency positional encoding,
FreeNeRF serves more like a coarse-to-fine strategy and
leads to only a little improvement. From the visualization of
SparseNeRF in Figure 3, it can be observed that it is insuf-
ficient in the 3D Gaussian radiance fields of 3DGS to only
keep the depth ranking and wait for the color-supervised
optimization process to refine the detailed geometry. Com-
pared with these two methods, our DNGaussian achieves a
much better quality with only a little increment of training
time. With less noise in the learned geometry, our method
also achieves a faster inference speed.
Conclusion. The experiments show that the previous meth-
ods for implicit backbones can hardly, at least in an easy
way, transfer to current fast backbones. Also, they are not
suitable for the 3D Gaussian radiance fields. In such a sit-



Backbone Strategy PSNR ↑ LPIPS ↓ SSIM ↑ Time ↓ VM Cost ↓ FPS ↑

Mip-NeRF [1]
None 14.62 0.495 0.351 2.2h

≥ 32 GB 0.09FreeNeRF 19.63 0.308 0.612 2.3h
SparseNeRF 19.86 0.328 0.624 1.5h

Instant-NGP [10]
None 17.19 0.483 0.469 3.8min

3 GB 3FreeNeRF 15.30 0.516 0.369 4.2min
SparseNeRF 17.19 0.478 0.476 7.5min

TensoRF [3]
None 16.16 0.454 0.443 4.1min

8 GB 5FreeNeRF 15.78 0.466 0.430 4.5min
SparseNeRF 16.11 0.465 0.443 8.9min

3DGS [8]
None 16.46 0.401 0.440 2.7min

2 GB 280FreeNeRF 16.55 0.399 0.472 2.7min
SparseNeRF 16.80 0.374 0.504 2.9min

3DGS [8] Ours 19.12 0.294 0.591 3.5min 2 GB 300

Table 3. Comparision of SOTA strategies FreeNeRF [21] and SparseNeRF [18] with different backbones. The best results for all and
for each backbone are marked with bold and underline. Although FreeNeRF and SparseNeRF perform well on the implicit Mip-NeRF [1],
they can weakly improve the quality with current fast backbones Instant-NGP [10], TensoRF [3], and also the 3DGS [8] in our work.

uation, our DNGaussian shows significant value in provid-
ing an efficient way for high-quality and low-cost few-shot
novel view synthesis.

A.4. Comparison with Grid-based Methods

There are some works [16, 17, 20] that utilize a grid-based
backbone to improve the training efficiency. Since DaRF
[16] is evaluated on another two datasets with at least 9 in-
put views, while VGOS [17] and DiffusioNeRF [20] use
different methods for the measurement of metrics, we do
not take them as baselines in the main paper. Here we list
the scores of VGOS and DiffusioNeRF in Table 4 in the
LLFF 3-view setting for comparison. For VGOS, we only
report scores for which the measurement method is defi-
nitely the same as in RegNeRF [11] and FreeNeRF [21].
The results of DiffusioNeRF are obtained from its updated
paper on arXiv 2. In the comparison, our method outper-
forms the other two with the highest scores in LPIPS, SSIM,
and AVGE. In fact, our method also achieves the best in ef-
ficiency, with much lower cost and faster inference.

A.5. Additional Visualizations

We provide more rendering results in our experiments. The
examples on DTU and LLFF with 3 training views are
shown in Figure 5 and 6. We have also shown more quan-
titative comparison in the Blender 8-view setting with the
SOTA method FreeNeRF [21] in Figure 4. More results can
be found in our supplementary video.

2https://arxiv.org/abs/2302.12231

Figure 4. Qualitative comparison on the Blender dataset with
8 input views. FreeNeRF [21] learns the accurate geometry by
masking high-frequency signals, however, suffers from blurry de-
tails as the trade-off. In contrast, our method does not explicitly
constrain the learning of high-frequency content. Also attributed
to the 3D Gaussian neural fields, our method performs better in the
fine-grained details.

B. Details

B.1. Implementations

Pre-trained Depth Models. In this work, we use the
pre-trained DPT [12, 13] estimator to predict the depth
map, which has been widely used in many NeRF-based

https://www.youtube.com/watch?v=WKXCFNJHZ4o


Figure 5. Examples of the synthesized novel view results from DNGaussian with 3 input views on the DTU dataset.

Figure 6. Examples of the synthesized novel view results from DNGaussian with 3 input views on the LLFF dataset.



Method PSNR↑ LPIPS↓ SSIM↑ AVGE↓
VGOS [17] 19.35 0.432 - -
DiffusioNeRF [20] 19.79 0.338 0.568 0.136

Ours 19.12 0.294 0.591 0.132

Table 4. Comparison with grid-based few-shot NeRFs on
LLFF with 3 training views. Our method outperforms grid-based
methods VGOS [17] and DiffusioNeRF [17].

Type PSNR ↑ LPIPS ↓ SSIM ↑ AVGE ↓
LLFF

dpt hybrid 384* 19.12 0.294 0.591 0.132
dpt large 384 19.03 0.297 0.590 0.135

DTU

dpt hybrid 384 18.86 0.179 0.784 0.106
dpt large 384* 18.91 0.176 0.790 0.102

Table 5. The influence of different pre-trained depth models.
We replace the pre-trained depth model with a different type in our
LLFF and DTU settings while keeping the same hyperparameters.
The results show that our method is robust to different monocular
depth estimators. * denotes the default type of each dataset.

works [2, 4, 18, 19]. Particularly, we use the type of
dpt hybrid 384 for the LLFF dataset, while dpt large 384
for DTU and Blender, which performs better for the pure
white or black background. In fact, the performance gaps
of our method when applying different types of depth mod-
els are slight, as shown in Table 5.
Patch Size. In our implementation, we randomly sample
a patch size from a pre-defined range for our patch-based
Global-Local Depth Normalization. This range is set of
[5, 17] for LLFF and Blender, and a larger [17, 51] for DTU
since the objects are smaller but occupy a large proportion
of the image. Due to the flexibility of our normalization, we
do not need to separately tune this value for each scene.
Metrics. Following previous methods [11, 21], we utilize
the “structural similarity” API from scikit-image 3 to com-
pute the SSIM score, and use the implementation with a
pre-trained VGG model to calculate the LPIPS score.
Camera Poses. Following existing works [6, 11, 18, 21],
we assume all camera poses are already known. In prac-
tice, for LLFF and Blender, we use the given poses from
the datasets. For DTU, we use COLMAP [14, 15] to calcu-
late the camera poses according to all given views, and then
sample the target sparse views from the results.

B.2. Datasets

LLFF. The LLFF dataset [9] contains 8 forward-facing
scenes in total. Following [11, 18, 21], we take every 8-
th image as the novel views for testing. The input views
are evenly sampled across the remaining views. Images are
downsampled 8× to the resolution of 378×504. In practice,
we ignore the distortion of the original images.

3https://scikit-image.org/docs/stable/api/skimage.metrics.html

DTU. The DTU dataset [7] consists of 124 object-centric
scenes captured by a set of fixed cameras. We follow [11,
18, 21] to evaluate models directly on the 15 scenes with the
scan IDs of 8, 21, 30, 31, 34, 38, 40, 41, 45, 55, 63, 82, 103,
110, and 114. In each scan, the images with the following
IDs of 25, 22, and 28 are used as the input views in our 3-
view setting. The test set consists of images with IDs of 1,
2, 9, 10, 11, 12, 14, 15, 23, 24, 26, 27, 29, 30, 31, 32, 33,
34, 35, 41, 42, 43, 45, 46 and 47 for evaluation. The images
are downsampled 4×. In particular, we use the undistorted
images from COLMAP to eliminate the negative impact of
unerased lens distortion.
Blender. We follow the data split used in [6, 21] for the
Blender dataset [5]. The 8 input views are selected from the
training images, with IDs 26, 86, 2, 55, 75, 93, 16, 73, and
8. The 25 test views are sampled evenly from the testing
images for evaluation. All images are downsampled 2× to
400× 400 during the experiment.

C. Discussions and Limitations
Our DNGaussian utilizes coarse monocular depth to reg-
ularize the scene geometry in situations with sparse input
views, and achieves significant improvement in the appear-
ance quality. However, our method still has limitations such
as below. We hope these issues can be solved in future work.
More Input Views. Besides only 3 input views, we have
also explored the performance when the number of input
views increases to 6 and 9 on the LLFF dataset, as shown
in Table 6. In the experiment, it can be observed that as the
number of views increases, the performance of the baseline
also improves. Our DNGaussian can still improve the qual-
ity of the synthesized novel view with 6 input views. How-
ever, it does not work well when the number of input views
increases to 9, which is nearly enough to provide sufficient
color constraints. This may be due to the errors in the depth
map that negatively influence the optimization process. The
next step of our work can lie in leveraging the uncertainty
of the monocular depth to filter out unreliable supervision.

Views Method PSNR ↑ LPIPS ↓ SSIM ↑ AVGE ↓

3
3DGS 15.52 0.405 0.408 0.209
3DGS† 16.46 0.401 0.440 0.192
DNGaussian 19.12 0.294 0.591 0.132

6
3DGS 20.63 0.226 0.699 0.108
3DGS† 21.09 0.229 0.699 0.103
DNGaussian 22.18 0.198 0.755 0.088

9
3DGS 20.44 0.230 0.697 0.108
3DGS† 23.21 0.176 0.785 0.076
DNGaussian 23.17 0.180 0.788 0.077

Table 6. Comparison with 3, 6, and 9 input views on LLFF
dataset. † denotes applied with the same hyperparameters and the
neural color renderer as DNGaussian.

Solid Color Planes. The anisotropic shape of the Gaussian



primitive makes it difficult to represent a solid color plane
in a situation with sparse input views. First, the primitives
are hard to constrain both by color and depth in the region
of the plane, which may cause ray-like noises and hollows.
Also, since they can freely move to other regions with simi-
lar colors, the densification operation can be activated more
frequently and generate noises. This is hoped solved by ad-
ditional geometry priors.
Specular Regions. Although our method can handle some
specular regions by relying on depth supervision, especially
from our Local Depth Normalization, the inconsistent ap-
pearances in these regions are still challenging for 3DGS.
To completely solve this problem may still need more spe-
cial designs.
Hollows and Cracks. The splatting technique of our Gaus-
sian Splatting [8] backbone directly merges existing prim-
itives to render the pixel-level color without interpolation.
However, since not every pixel can be overlapped by the
projected primitives, the empty space between two Gaus-
sian primitives would cause hollows and cracks when the
camera pose changes. For example, some hollows can be
seen at Scan 40 in Figure 5. In this work, we try to solve
this problem by paying more attention to high-frequency
details and therefore encouraging the densifying of primi-
tives to fill these empty areas. In the future, we believe this
problem can be fundamentally solved by the improvement
of the representation itself.
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