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Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang, Dawn
Song, and Costas J Spanos. Towards efficient data valuation
based on the shapley value. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages 1167–
1176. PMLR, 2019. 1, 2

[12] Kevin Fu Jiang, Weixin Liang, James Zou, and Yongchan
Kwon. Opendataval: a unified benchmark for data valuation.
arXiv preprint arXiv:2306.10577, 2023. 3, 7, 4

[13] Hoang Anh Just, Feiyang Kang, Jiachen T Wang, Yi Zeng,
Myeongseob Ko, Ming Jin, and Ruoxi Jia. Lava: Data
valuation without pre-specified learning algorithms. arXiv
preprint arXiv:2305.00054, 2023. 1, 2, 4, 5, 6, 8

[14] Feiyang Kang, Hoang Anh Just, Anit Kumar Sahu, and
Ruoxi Jia. Performance scaling via optimal transport: En-
abling data selection from partially revealed sources. arXiv
preprint arXiv:2307.02460, 2023. 2

[15] Soheil Kolouri, Se Rim Park, Matthew Thorpe, Dejan
Slepcev, and Gustavo K Rohde. Optimal mass transport:
Signal processing and machine-learning applications. IEEE
signal processing magazine, 34(4):43–59, 2017. 1

[16] Yongchan Kwon and James Zou. Beta shapley: a unified and
noise-reduced data valuation framework for machine learn-
ing. arXiv preprint arXiv:2110.14049, 2021. 2

[17] Yongchan Kwon and James Zou. Data-oob: out-of-bag
estimate as a simple and efficient data value. In Inter-
national Conference on Machine Learning, pages 18135–
18152. PMLR, 2023. 3

[18] Yongchan Kwon, Manuel A Rivas, and James Zou. Effi-
cient computation and analysis of distributional shapley val-
ues. In International Conference on Artificial Intelligence
and Statistics, pages 793–801. PMLR, 2021. 2

[19] Jinkun Lin, Anqi Zhang, Mathias Lécuyer, Jinyang Li, Auro-
jit Panda, and Siddhartha Sen. Measuring the effect of train-
ing data on deep learning predictions via randomized exper-
iments. In International Conference on Machine Learning,
pages 13468–13504. PMLR, 2022. 2

[20] Zelei Liu, Yuanyuan Chen, Han Yu, Yang Liu, and Lizhen
Cui. Gtg-shapley: Efficient and accurate participant contri-
bution evaluation in federated learning. ACM Transactions
on Intelligent Systems and Technology (TIST), 13(4):1–21,
2022. 1, 2, 6, 4, 5

[21] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282.
PMLR, 2017. 1, 8

[22] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh.
Agnostic federated learning. In International Conference on
Machine Learning, pages 4615–4625. PMLR, 2019. 4

[23] Eduardo Fernandes Montesuma and Fred Maurice Ngole
Mboula. Wasserstein barycenter for multi-source domain
adaptation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16785–
16793, 2021. 2, 4

[24] Brendan Pass. Multi-marginal optimal transport: theory
and applications. ESAIM: Mathematical Modelling and
Numerical Analysis-Modélisation Mathématique et Analyse
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7. Technical Concepts Definition
To formulate equation 3, we utilized the mathematical prop-
erty of Wasserstein Distance as below.

Property 1 (Triangle Inequality of Wasserstein Distance)
For any p ≥ 1, P,Q, γ ∈ Pp(X), Wp is a metric on Pp(X),
as such it satisfies the triangle inequality as [25]

Wp(P,Q) ≤ Wp(P, γ) +Wp(γ,Q), (13)

in order to attain equality, geodesics and Interpolating point
are defined as structuring tools of metric spaces.

Definition 2 (Geodesics [3]) Let (X , d) be a metric space.
A constant speed geodesic x : [0, 1] → X between
x0, x1 ∈ X is a continuous curve such that ∀a, b ∈
[0, 1], d

(
x(a), x(b)

)
= |a− b| · d(x0, x1).

Definition 3 (Interpolating point [3]) Any point xt from a
constant speed geodestic (x(t))t∈[0,1] is an interpolating
point and verifies d(x0, x1) = d(x0, xt) + d(xt, x1).

The above definitions and properties are used to define the
interpolating measure of the Wasserstein distance:

Definition 4 (Wasserstein Geodesics, Interpolating mea-
sure [3, 15]) Let P,Q ∈ Pp(X) with X ⊆ Rd compact,
convex and equipped with Wp. Let π⋆ ∈ Π(P,Q) be an
optimal transport plan between two distributions P and
Q. For t ∈ [0, 1], let γt = (πt)#π

⋆ where πt(x, y) =
(1 − t)x + ty, i.e. γt is the push-forward measure of π⋆

under the map πt. Then, the curve µ̄ = (γt)t∈[0,1] is a con-
stant speed geodesic, also called a Wasserstein geodesics
between P and Q.

8. Proof for Theorem 1
Since the Q(k) is the wasserstein barycenter for all interpo-
lating measures γ(k)

i where i ∈ [1, N ], we have

A(k) =

N∑
i

[Wp(Pi, γ
(k)
i ) +Wp(Q

(k), γ
(k)
i )] (14)

=

N∑
i

Wp(Pi, γ
(k)
i ) +

N∑
i

Wp(Q
(k), γ

(k)
i ) (15)

≤
N∑
i

Wp(Pi, γ
(k)
i ) +

N∑
i

Wp(Q
(k−1), γ

(k)
i ) (16)

Define the interpolating measure between γ
(k)
i

and Q(k−1) as η
(k)

′

Qi
, we have Wp(Q

(k−1), γ
(k)
i ) =

Wp(Q
(k−1), η

(k)
′

Qi
) +Wp(η

(k)
′

Qi
, γ

(k)
i ).

Based on Algorithm 1, η(k+1)
Pi

is the interpolating measure

for Pi and γ
(k)
i . Thus, we can derive that,

Wp(Pi, η
(k+1)
Pi

) +Wp(η
(k+1)
Pi

, γ
(k)
i )

≤ Wp(Pi, η
(k)
Pi

) +Wp(η
(k)
Pi

, γ
(k)
i ) (17)

Wp(Q
(k−1), η

(k)
′

Qi
) +Wp(η

(k)
′

Qi
, γ

(k)
i )

≤ Wp(Q
(k−1), η

(k)
Qi

) +Wp(η
(k)
Qi

, γ
(k)
i ) (18)

These two inequalities lead to

Wp(Pi, η
(k+1)
Pi

) +Wp(η
(k+1)
Pi

, γ
(k)
i )

+Wp(Q
(k−1), η

(k)
′

Qi
) +Wp(η

(k)
′

Qi
, γ

(k)
i )

≤ Wp(Pi, η
(k)
Pi

) +Wp(η
(k)
Pi

, γ
(k)
i ) (19)

+Wp(Q
(k−1), η

(k)
Qi

) +Wp(η
(k)
Qi

, γ
(k)
i ) (20)

Simultaneously, the γ
(k)
i is the interpolating measure for

η
(k)
Pi

and η
(k)
Qi

. So we have

Wp(η
(k)
Pi

, γ
(k)
i ) +Wp(η

(k)
Qi

, γ
(k)
i )

≤ Wp(η
(k)
Pi

, γ
(k−1)
i ) +Wp(η

(k)
Qi

, γ
(k−1)
i ) (21)

and

Wp(Pi, η
(k+1)
Pi

) +Wp(η
(k+1)
Pi

, γ
(k)
i )

+Wp(Q
(k−1), η

(k)
′

Qi
) +Wp(η

(k)
′

Qi
, γ

(k)
i )

≤ Wp(Pi, η
(k)
Pi

) +Wp(Q
(k−1), η

(k)
Qi

)

+Wp(η
(k)
Pi

, γ
(k−1)
i ) +Wp(η

(k)
Qi

, γ
(k−1)
i ) (22)

= Wp(Pi, γ
(k−1)
i ) +Wp(Q

(k−1), γ
(k−1)
i ) (23)



Hence, we can now derive that

A(k) ≤
N∑
i

Wp(Pi, γ
(k)
i ) +

N∑
i

Wp(Q
(k−1), γ

(k)
i ) (24)

=

N∑
i

[Wp(Pi, η
(k+1)
Pi

) +Wp(η
(k+1)
Pi

, γ
(k)
i )]

+

N∑
i

[Wp(Q
(k−1), η

(k)
′

Qi
) +Wp(η

(k)
′

Qi
, γ

(k)
i )] (25)

=

N∑
i

[Wp(Pi, η
(k+1)
Pi

) +Wp(η
(k+1)
Pi

, γ
(k)
i )

+Wp(Q
(k−1), η

(k)
′

Qi
) +Wp(η

(k)
′

Qi
, γ

(k)
i )] (26)

≤
N∑
i

[Wp(Pi, γ
(k−1)
i ) +Wp(Q

(k−1), γ
(k−1)
i )] = A(k−1)

(27)

Thus, the sequence A(k) is non-increasing. By the triangle
inequality, we have for any k ∈ N,

N∑
i

Wp(Pi, Q) ≤ A(k) (28)

Using the monotone convergence theorem, since A(k) is
non-increasing and bounded sequence below, then it con-
verges to its infimum.

9. Proof for Theorem 2
In this section, we give a detailed proof for Theorem 2,
which is a restatement of the proof for Theorem 1 in [13].
First, denote joint distribution of random data-label pairs
(x, ft(x))x∼Pi(x) and (x, fv(x))x∼Q(x) as P ft

i and Qfv re-
spectively, which are the same notation as Pi and Q but
made with explicit dependence on ft and fv for clarity. The
distributions of (ft(x))x∼Pi(x) and (fv(x))x∼Q(x) as Pift
and Qfv respectively. Besides, we define conditional dis-
tributions Pi(x|y) := Pi(x)I[ft(x)=y]∫

Pi(x)I[ft(x)=y]dx
and Q(x|y) :=

Q(x)I[fv(x)=y]∫
Q(x)I[fv(x)=y]dx

. Also, we denote π ∈ Π(Pi, Q) as
a coupling between a pair of distributions Pi, Q and d :
X × X → R as distance metric function. Generally, the
p-Wasserstein distance with respect to cost function C is de-
fined as Wp(Pi, Q) := infπ∈Π(Pi,Q) E(x,y)∼π[C(x, y)].

To prove Theorem 2, the concept of probabilistic cross-
Lipschitzness is needed, and it is assumed that two labeling
functions should produce consistent labels with high prob-
ability on two close instances.

Definition 5 (Probabilistic Cross-Lipschitzness). Two la-
beling functions ft : X → {0, 1}V and fv : X → {0, 1}V

are (ϵ, δ)-probabilistic cross-Lipschitz w.r.t. a joint distri-
bution π over X × X if for all ϵ > 0:

P(x1,x2)∼π[||ft(x1)− fv(x2)|| > ϵd(x1, x2)] ≤ δ (29)

Given labeling functions ft, fv and a coupling π, we can
bound the probability of finding pairs of training and valida-
tion instances labeled differently in a (1/ϵ)-ball with respect
to π.

Let π∗
x,y be the coupling between P ft

i and Qfv such that

π∗
x,y :=

arg
π∈Π(P

ft
i ,Qfv )

inf E((xi,yi),(xq,yq))∼π[C((xi, yi), (xq, yq))].

(30)

We define two couplings π∗ and π̃∗ between Pi(x), Q(x) as
follows:

π∗(xi, xq) :=

∫
Y

∫
Y
π∗
x,y((xi, yi), (xq, yq))dyidyq. (31)

For π̃∗, we first need to define a coupling between Pift
and

Qfv :

π∗
y(yi, yq) :=

∫
X

∫
X
π∗
x,y((xi, yi), (xq, yq))dxidxq (32)

and another coupling between P ft
i , Qfv :

π̃∗
x,y(xi, yi), (xq, yq)) := π∗

y(yi, yq)Pi(xi|yi)Q(xq|yq).
(33)

Finally, π̃∗ is constructed as follows:

π̃∗(xi, xq) :=

∫
Y

∫
Y
π∗
y(yi, yq)Pi(xi|yi)Q(xq|yq)dyidyq.

(34)
Next, we are going to prove Theorem 2. The lefthand

side of inequality in the theorem can be written as

Ex∼Q(x)[L(fv(x), f(x))]
= Ex∼Q(x)[L(fv(x), f(x))]
− Ex∼Pi(x)[L(ft(x), f(x))] + Ex∼Pi(x)[L(ft(x), f(x))]

(35)

≤ Ex∼Pi(x)[L(ft(x), f(x))]
+ |Ex∼Q(x)[L(fv(x), f(x))]− Ex∼Pi(x)[L(ft(x), f(x))]|

(36)

We bound |Ex∼Q(x)[L(fv(x), f(x))] −



Ex∼Pi(x)[L(ft(x), f(x))]| as follows:

|Ex∼Q(x)[L(fv(x), f(x))]− Ex∼Pi(x)[L(ft(x), f(x))]|

= |
∫
X 2

[L(fv(xq), f(xq))− L(ft(xi), f(xi))]dπ
∗(xi, xq)|

(37)

= |
∫
X 2

[L(fv(xq), f(xq))− L(fv(xq), f(xi))

+ L(fv(xq), f(xi))− L(ft(xi), f(xi))]dπ
∗(xi, xq)|

(38)

≤
∫
X 2

|L(fv(xq), f(xq))− L(fv(xq), f(xi))|dπ∗(xi, xq)︸ ︷︷ ︸
U1

+

∫
X 2

|L(fv(xq), f(xi))− L(ft(xi), f(xi))|dπ∗(xi, xq)︸ ︷︷ ︸
U2

(39)

where the last inequality is due to triangle inequality. Now,
we bound U1 and U2 separately. For U1, we have

U1 ≤ k

∫
X 2

||f(xq)− f(xi)||dπ∗(xi, xq) (40)

≤ kϵ

∫
X 2

d(xi, xq)dπ
∗(xi, xq), (41)

where both inequalities are due to Lipschitz-
ness of L and f . Recall that π∗

y(yi, yq) :=∫
X
∫
X π∗

x,y((xi, yi), (xq, yq))dxidxq and
π̃∗
x,y(xi, yi), (xq, yq)) := π∗

y(yi, yq)Pi(xi|yi)Q(xq|yq).
And for U2, we can derive that

U2 ≤ k

∫
Y2

∫
X 2

||yq − yi||dπ∗
x,y((xi, yi), (xq, yq)) (42)

= k

∫
Y2

||yq − yi||dπ∗
y(yi, yq) (43)

= k

∫
X 2

∫
Y2

||yq − yi||dπ̃∗
x,y((xi, yi), (xq, yq)) (44)

= k

∫
Y2

∫
X 2

||fv(xq)− ft(xi)||dπ̃∗
x,y((xi, yi), (xq, yq)),

(45)

where the last step holds since if yi ̸= ft(xi) or yq ̸=
fv(xq), then π̃∗

x,y((xi, yi), (xq, yq)) = 0. Define the region

A = (xi, yi) : ||fv(xq)− ft(xi)|| < ϵtvd(xi, xq), then

U2 ≤ k

∫
Y2

∫
X 2

||fv(xq)− ft(xi)||dπ̃∗
x,y((xi, yi), (xq, yq))

(46)

= k

∫
Y2

∫
X 2\A

||fv(xq)− ft(xi)||dπ̃∗
x,y((xi, yi), (xq, yq))

+ k

∫
Y2

∫
A
||fv(xq)− ft(xi)||dπ̃∗

x,y((xi, yi), (xq, yq))

(47)

≤ k

∫
Y2

∫
X 2\A

2V dπ̃∗
x,y((xi, yi), (xq, yq))

+ k

∫
Y2

∫
A
||fv(xq)− ft(xi)||dπ̃∗

x,y((xi, yi), (xq, yq)).

(48)

Define f̃t(xi) = ft(xi) and f̃v(xq) = fv(xq) if (xi, xq) ∈
A, and f̃t(xi) = f̃v(xq) = 0 otherwise (note that ||f̃v(xq)−
f̃t(xi)|| < ϵtvd(xi, xq) for all (xi, xq) ∈ X 2), then we can
bound the second term as follows:

k

∫
Y2

∫
A
||fv(xq)− ft(xi)||dπ̃∗

x,y((xi, yi), (xq, yq))

(49)

≤ k

∫
Y2

dπ∗
y(yi, yq)∫

A
||fv(xq)− ft(xi)||dPi(xi|yi)dQ(xq|yq) (50)

= k

∫
Y2

dπ∗
y(yi, yq)∫ 2

X
||f̃v(xq)− f̃t(xi)||dPi(xi|yi)dQ(xq|yq) (51)

= k

∫
Y2

dπ∗
y(yi, yq)∫ 2

X
||Exq∼Q(·|yq)[f̃v(xq)]− Exi∼Pi(·|yi)[f̃t(xi)]|| (52)

≤ kϵtv

∫
Y2

dπ∗
y(yi, yq)Wp(Pi(·|yi), Q(·|yq)). (53)

The last inequality is a consequence of the duality form of
the Kantorovich-rubinstein theorem [37]. Combining all



parts, we have

U1 + U2 ≤ kϵ

∫
X 2

d(xi, xq)dπ
∗(xi, xq)

+ k

∫
Y2

∫
X 2\A

2V dπ̃∗
x,y((xi, yi), (xq, yq))

+ kϵtv

∫
Y2

dπ∗
y(yi, yq)Wd(Pi(·|yi), Q(·|yq)) (54)

≤ kϵ

∫
X 2

d(xi, xq)dπ
∗(xi, xq) + 2kV δtv

+ kϵtv

∫
Y2

dπ∗
y(yi, yq)Wp(Pi(·|yi), Q(·|yq)) (55)

= 2kV δtv + k

∫
(X×Y)2

[ϵd(xi, xq)

+ ϵtvWp(Pi(·|yi), Q(·|yq))]dπ∗
x,y((xi, yi), (xq, yq))

(56)

≤ 2kV δtv + k

∫
(X×Y)2

[ϵd(xi, xq)+

cϵWp(Pi(·|yi), Q(·|yq))]dπ∗
x,y((xi, yi), (xq, yq)) (57)

= kϵEπ∗
x,y

[C((xi, yi), (xq, yq))] + 2kV δtv (58)

= kϵWp(P
ft
i , Qfv ) + 2kV δtv. (59)

Thus the inequality in theorem 2 has been proved. For a
more detailed discussion, please refer to [13].

10. Experiments Details

10.1. Client Evaluation

We follow the same settings in [20] and [34] and divide the
combination of distribution and size for client data into five
different cases.
(1) Same Distribution and Same Size: All five clients pos-
sess the same number of images for each class;
(2) Different Distributions and Same Size: Each partic-
ipant has the same number of samples. However, the Par-
ticipant 1 dataset contains 80% for two classes. The other
clients evenly divide the remaining 20% of the samples.
Similar procedures are applied to the rest;
(3) Same Distribution and Different Sizes: Randomly
sample from the entire training set according to pre-defined
ratios to form the local dataset for each participant, while
ensuring that there are the same number of images for each
class in each participant. The ratios for client 1-5 are:
10%,15%, 20%, 25% and 30%;
(4) Noisy Labels and Same Size: Adopt the dataset from
case (1), and flip the labels of a pre-defined percentage of
samples in each participant’s local dataset. The ratios for
client 1-5 are: 0%,5%, 10%, 15% and 20%;
(5) Noisy Features and Same Size: Adopt the dataset from
case (1), and add different percentages of Gaussian noise

into the input images. The ratios for client 1-5 are: 0%,5%,
10%, 15% and 20%.

10.2. Implementation Details

The code implementation is developed based on Pytorch.
We also developed our code and conduct comparisons based
on the reference from the following sources:
• Opendataval [12]
• LAVA [13]
• WBTransport [23]
• GTG-Shapley [20]

10.3. Experimental Baselines

Original Shapley The Shapley value is a concept from co-
operative game theory that has been applied to machine
learning to attribute a value to each feature (or client) in
a predictive model. It provides a way to fairly distribute the
“contribution” of each player in a cooperative game. In the
context of federated learning, it can be assumed that the pre-
diction of a model in the server is the outcome of a game,
and each client is a player contributing to that prediction.
The Shapley value assigns a value to each client based on
its marginal contribution to the model’s prediction across all
possible combinations of data for different clients.

Formally, a coalitional game is defined as: There is a
set N (of n players) and a function v that maps subsets of
players to the real numbers: 2N → R, with v(∅) = 0, where
∅ denotes the empty set. Then a general formula to calculate
the Shapley value is provided as follows:

φi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S))

(60)
where n is the total number of players and the sum ex-

tends over all subsets S of N not containing player i.
MR/OR [34] These two metrics are based on the contri-
bution index, which is a concept proposed by the paper to
replace the original Shapley value. Since direct comput-
ing of the contribution index can be time-consuming, two
gradient-based methods are provided to reduce the time.
The first one reconstructs models by updating the initial
global model in federated learning with the gradients in dif-
ferent rounds. Then it calculates the contribution index by
the performance of these reconstructed models. The sec-
ond method calculates the contribution index in each round
by updating the global model in the previous round with the
gradients in the current round. Contribution indexes of mul-
tiple rounds are then added together with elaborated weights
to get the final result.
TMC-Shapley [8] The Truncated Monte Carlo Shapley
(TMC-Shapley) is a data evaluation metric to quantify the
value of each training datum to the predictor performance.



Figure 6. Wassestein Distances Under Different Support for Q (x-axis is the client number)

The Monte Carlo and gradient-based methods are devel-
oped to efficiently estimate the value in practical settings.
However, this metric only considers the context of super-
vised machine learning, and the privacy demand is ne-
glected in the paper.
FedShapley [41] This metric is proposed as a variant of the
Shapley value amenable to federated learning. The key idea
of the modification is to characterize the aggregate value
of the set of clients in the same round through the model
performance change caused by the addition of their data and
then use the Shapley value to distribute the value of the set
to each client. Compared with the canonical SV, it can be
calculated without incurring extra communication costs and
is capable of capturing the effect of participation order on
data value.
GTG-Shapley [20] The Guided Truncation Gradient Shap-
ley (GTG-Shapley) approach is a modification of the orig-
inal Shapley value to address the challenge of significant
computation costs in practice. It reconstructs federated
learning models from gradient updates for Shapley value
calculation instead of repeatedly training with different
combinations of participants. A guided Monte Carlo sam-
pling technique is introduced into the algorithm, enhancing
the efficiency of calculation and reducing the computation
costs.

11. Discussions
11.1. Hyperparameter Analysis

Our observations have shown that epoch K exerts minimal
influence on the approximated distance. Conversely, with
an increasing quantity of supports of the interpolating mea-
sure S, the approximated distance progressively approaches
the exact distance. Consequently, in the context of eval-
uating relative contributions, a choice of few epochs and
supports can effectively approximate the relative distance,
leading to a reduction in computational complexity.

11.2. Consistent evaluation time

We find the truncation techniques in [8, 20] depend on the
test performance, when the performance with a certain sub-
set of clients is above the pre-specified threshold, contri-

Data #Noisy #Removed acc.before acc.after
CIFAR10 500 494 0.67 0.73
Fashion 1000 580 0.56 0.64

Table 4. Accuracy before/after removing detected noisy samples

butions of remaining clients are assigned to 0 without ad-
ditional evaluations. Therefore, the evaluation time varies
with different truncation times and in the worst case the
truncation will be conducted at the last round, making the
complexity approaching O(2N ). In addition, the gradients
in [34] with noisy data make MR and OR approaches have
larger elapsed time than other cases. However, FedBary is
robust and the elapsed time will not be affected by data char-
acteristics.

11.3. Client detection is better than server detection

The detection accuracy is 100% in the client side
with ∇Wp(Pi, ηQ) and 76% in the server side with
∇Wp(ηQ, Q). We conjecture this result is due to the gradi-
ent towards the Pi is more informative and straightforward.
For the mislabeled data detection, our approach could only
detect 45% of noisy data. However, it is worth noting that
when accessing data, the mislabeled detection accuracy is
only 47%, and the bottom plots show two approaches are
almost overlapping, which shows Fedbary does not sacri-
fice much performance on detections on the benchmark of
accessing data.

11.4. Boost FL Performance

11.5. Future Explorations

Noisy Label Detection The current approach, which relies
on an augmented matrix based on a Gaussian approxima-
tion for the conditional distribution, demonstrates relatively
poor performance in differentiating clean subsets from mis-
labeled ones compared to the case of noisy features. To
address this issue, a potential future direction is to imple-
ment exact calculations for the Wasserstein distance by uti-
lizing an interpolating measure and an appropriate embed-
ding approach, to design a filtering approach for the misla-
beled case.



Accurate Server Detection Detecting noisy data from the
server side is crucial for defending against potential attacks
from untrusted clients. The current approach, primarily
driven by client-side analysis, excels in detection due to the
client’s access to their own data and the ability to measure
gradients with respect to the interpolating measure such as
γi or ηQi shared from the server side. However, the de-
tection ability from the server side is limited since it can-
not access local client data, and using ηPi

from the local
client or γi is less effective in our explorations. Strength-
ening the server-side detection capabilities is of paramount
importance in the context of the security application.


