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Supplementary Material

As introduced in the submitted paper, we propose a
method named DDSemi for handling the semi-supervised
3D semantic segmentation task, which includes a density-
guided contrastive learning technique and a dual-space
hardness sampling strategy. In the supplementary material,
we provide more details on the training configuration and
more visualization results.

1. Training Configuration
The backbone network can be an arbitrary 3D semantic seg-
mentation network [4, 5, 8, 11]. The classifier and projector
are both multi-layer perceptions.

For the S3DIS [1] dataset, we adopt AdamW as the op-
timizer and use the Cosine learning rate scheduler. The
learning rate and weight decay are set to 0.0006 and 0.05,
respectively. For the SemanticKITTI [2] and nuScenes [3]
datasets, we adopt AdamW as the optimizer and use the
poly learning rate scheduler where the power is set to 0.9.
The learning rate and weight decay are set to 0.006 and
0.01, respectively.

In addition, it is worth noting that when Kong et al. [7]
compared their proposed LaserMix with GPC [6], they di-
rectly used the scores reported in [6]. However, Kong et al.
and Jiang et al. [6] used different settings (e.g., the data
splits), thus, we reproduced the results of GPC with the
same settings that Kong et al. used on the SemanticKITTI

Figure 1. Visualization of the features sampled from the S3DIS [1]
dataset and their corresponding anchors. The circles represent the
features and the diamonds represent the anchors. Different colors
represent different categories.

dataset and reported the reproduced results in our submitted
paper for a fair comparison.

2. Limitation
The proposed DDSemi requires many k-nearest neighbors
searching operations at the training stage, resulting in a rel-
atively higher training cost. For example, compared with
GPC [6] which spends 3 seconds on each training iteration,
the proposed DDSemi has to spend 6 seconds on each train-
ing iteration. However, it is worth noting that the inference
speed of DDSemi is the same as the comparative methods,
because only the backbone network and classifier are used
at the inference stage.

3. More Visualization Results
We visualize the features and their corresponding anchors
in Figure 1. As seen from this figure, the features and their
corresponding anchors aggregate in the same local regions
of the feature space, and the anchors are located in the dense
local regions of their corresponding clusters rather than the
naive center of the clusters, which is consistent with the re-
vealed finding about clustering in [10].

In addition, we give more visualization of the segmenta-
tion results on three public datasets in Figure 2, Figure 3,
and Figure 4. As seen from these figures, the proposed
DDSemi outperforms the comparative methods.
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Ground Truth LiM3D DDSemi

Figure 2. Visualization of the semantic segmentation results on the SemanticKITTI [2] dataset by LiM3D [9] and the proposed DDSemi.

Ground Truth LaserMix DDSemi

Figure 3. Visualization of the semantic segmentation results on the nuScenes [3] dataset by LaserMix [7] and the proposed DDSemi.

Ground Truth GPC DDSemi

Figure 4. Visualization of the semantic segmentation results on the S3DIS [1] dataset by GPC [6] and the proposed DDSemi.
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