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Figure 1. After recovering simulation-ready assets, we can easily generate novel simulation results.

1. DiffXPBD: Differentiable Simulation
We provide details on the implementation of our differ-

entiable simulator which builds upon DiffXPBD [1]. The
simulation moves the states forward in time using qn+1 =
Fn (qn+1,qn,u), see Eq. (2). The adjoint states Q̂ are
computed in a backward pass using
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The XPBD simulation frameworks uses the following

update scheme.
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We find the adjoint evolution for the XPBD integration
scheme by combining this with (1) as
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After re-arranging and by substituting v̂n we find the ad-
joint states as(
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1.1. Material Model

We use the orthotropic StVK model for modeling
stretching and shearing and a hinge-based bending energy
as detailed in [1]. The material parameters are recovered as
part of the optimization process. Different material models
can also be used.

2. Gradient of 3D Cloth Positions to 2D Pat-
terns

To compute the gradient of the position with respect to
the 2D patterns, we need to compute ∂∆x

∂x̄i
, for each of the

2D cloth vertex i ∈ [0, 1, . . . , n]. We use the same set of
constraints as in DiffXPBD, where C = [ϵ00, ϵ11, ϵ01], and
ϵ is the Green strain.
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Given that ϵ is a function of the deformation gradient

F, we provide the gradient of F with respect to the rest
positions, and the rest should just follow from chain rule.
Note that F = DD̄−1, where the columns of D and D̄ are
the edge vectors, such that

D =
[
x0 − x2 x1 − x2
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The dimensions of the matrix D is 3x2, D̄ is 2x2, and F is
3x2.

We compute the derivative of the deformation gradient
using the Einstein notation for x̄0 and x̄1
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where x̄mn is the nth component of x̄m.
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3. Novel Animations
Figure 1 shows select frames from a novel simulated se-

quence with the recovered body shapes and garment pat-
terns and materials.
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