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In this supplementary, we first describe more details of

datasets (Sec. 1). Then, we describe the network architec-

ture (Sec. 2). We further provide additional results (Sec. 3).

Finally, we show more visualizations on the Oxford and

NCLT datasets (Sec. 4).

1. Dataset Details

We evaluate the proposed DiffLoc for LiDAR localization

on two large-scale outdoor benchmark datasets: Oxford

Radar RobotCar [2] (Oxford) and NCLT [7] datasets.

The Oxford dataset is collected by sensors on an

autonomous-capable Nissan LEAF platform, that contains

over 32 repetitions traversals of a center Oxford route (about

10km, 200hm2). The point cloud is scanned by dual Velo-

dyne HDL-32E LiDAR. In this paper, we only use the point

cloud from the left LiDAR.

The NCLT dataset is collected by sensors on a Seg-

way robotic platform on the University of Michigan’s North

Campus. The dataset contains 27 traversals, where each

traversal is nearly 5.5km and covers 45hm2. The point

cloud is scanned by a Velodyne HDL-32E LiDAR.

Both of the datasets are available online at:

• https://oxford-robotics-institute.github.io/radar-robotcar-

dataset/

• https://robots.engin.umich.edu/nclt/

For each dataset, we list the corresponding data split as

shown in Tab. 1 and Tab. 2. We also visualize the training

and test trajectories, as shown in Fig. 1.

2. Network Architecture

The detailed architecture of the proposed DiffLoc is illus-

trated in Fig. 2. Following [1], we use a convolutional stem

to replace the patch embedding layer in the standard ViT.

Specifically, for the input range image with size 5×H×W ,

the first 3 residual layers of the stem increase the dimension

to 32. Subsequently, the last residual layers of the stem gen-
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Sequence Length Tag Training Test

11-14-02-26 9.37km sunny ✓

14-12-05-52 9.22km overcast ✓

14-14-48-55 9.04km overcast ✓

18-15-20-12 9.04km overcast ✓

15-13-06-37 8.85km overcast ✓

17-13-26-39 9.02km sunny ✓

17-14-03-00 9.02km sunny ✓

18-14-14-42 9.04km overcast ✓

Table 1. Dataset details on the Oxford dataset.

Sequence Length Tag Training Test

2012-01-22 6.1km overcast ✓

2012-02-02 6.2km sunny ✓

2012-02-18 6.2km sunny ✓

2012-05-11 6.0km sunny ✓

2012-02-12 5.8km sunny ✓

2012-02-19 6.2km overcast ✓

2012-03-31 6.0km overcast ✓

2012-05-26 6.3km sunny ✓

Table 2. Dataset details on the NCLT dataset.

Figure 1. Visualization of the training and test trajectories on the

(a) Oxford Radar RobotCar and (b) NCLT datasets.

erate feature maps with the same resolution as the input im-

age but with 64 dimensions. To ensure compatibility with

ViT input requirements, we employ average pooling to re-

duce the size to [H/PH ] × [W/PW ], followed by a 1 × 1
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Figure 2. Overview of the proposed framework. The layer elements K, D, and BN represent the kernel size, dilation rate, and batch

normalization, respectively. Here, each convolution layer is followed by Leaky Relu as the activation function.

Datasets Rand DINO DINOv2

Oxford (m/◦) 3.80/0.88 3.62/0.82 3.53/0.72

NCLT (m/◦) 1.39/2.46 1.26/2.35 1.19/2.31

Table 3. Results with different foundation models on the Oxford

and NCLT datasets. Rand: randomly initialized.

convolution layer producing Cstem output channels. In this

paper, we set the values of [H,W ], [PH , PW ], and Cstem

to [32, 512], [4, 16], and 384, respectively. As a result, the

stem yields 256 visual tokens.

The output is then fed to a ViT, which is used by

DINO [8], to get the feature map F ∈ R
256×384 (without

classification token). The proposed static-object-aware pool

(SOAP) module, employed to guide the feature reweighting,

emphasizes features associated with robustness. For each

range image, the output of the feature learner is a global

feature FP ∈ R
384.

The feature FP is used as a condition to the denoiser,

achieving iteratively denoising from pure noise to the

ground truth pose. Here, we use a transformer, which con-

sists of 8 encoder layers with 4 attention heads for feature

aggregation, to implement denoiser. The latent embedding

dimension is set to 512. The final fully connected layers of

the denoiser are configured as [512, 64, 6].

3. Additional Results

3.1. Results with different foundation models

A recent study AnyLoc [5] indicates that joint embed-

ding self-supervised foundation models (DINO [3], DI-

NOv2 [8]) are more adept at learning long-range global pat-

terns compared to contrastive learning methods (CLIP [9])

Metrics 16 × 16 8 × 16 8 × 8 4 × 16 4 × 8

Mean error (m/◦) 3.52/0.97 3.66/0.81 3.44/0.86 3.53/0.72 3.57/0.78

Token number 64 128 256 256 512

Table 4. Results with different patch sizes on the Oxford dataset.

and masked autoencoding approaches (MAE [4]). This

characteristic makes them well-suited for visual localiza-

tion. Therefore, we explore the impact of DINO and DI-

NOv2, both employing a ViT-S backbone, on LiDAR local-

ization accuracy, as illustrated in Tab. 3.

We observe that using foundation models pretrained on

RGB images consistently outperforms training from scratch

on LiDAR data (entry Rand). Specifically, on the Oxford

and NCLT datasets, employing DINO and DINOv2 leads

to average improvements of 7.1%/5.7% and 10.8%/12.2%,

respectively. Moreover, we empirically find that using DI-

NOv2 for feature learning surpasses the performance of

using DINO, achieving a mean error of 3.53m/0.72◦ vs.

3.62m/0.82◦ and 1.19m/2.31◦ vs. 1.26m/2.35◦ on the Ox-

ford and NCLT datasets, respectively. This experiment

demonstrates that (1) the foundation model trained on RGB

images can effectively improve localization accuracy, even

with large domain differences, and (2) the foundation model

trained on a larger dataset can bring a more significant ac-

curacy improvement. Therefore, in this paper, we use DI-

NOv2 for feature learning.

3.2. Results with different patch sizes

We investigate the impact of different patch sizes on Lo-

calization results, as shown in Tab. 4. Intuitively, reducing

the patch size results in a finer representation. We observe



Methods SGLoc STCLoc NIDALoc HypLiLoc DiffLoc

Params 105M 9M 8M 52M 40M

Runtime 57ms 97ms 120ms 21ms 39ms

Table 5. Parameter count and runtime of different methods.

that (1) the position accuracy is robust to patch sizes, (2)

the orientation accuracy tends to increase as the patch size

reduces, and (3) the optimal result is obtained with [4, 16].
This means the smaller patches enable the learning of more

fine-grained information, which benefits orientation predic-

tion. Taking both position and orientation accuracy into ac-

count, in this paper, we implement the patch size as [4, 16].

3.3. Results about the parameter count

Tab. 5 shows the parameter count and runtime comparison

of DiffLoc with the existing competitive methods. DiffLoc

achieves SOTA accuracy with a moderate 40M parameter

and 39ms runtime. Note that the parameter of STCLoc and

NIDALoc is less than 10M due to their simple network de-

sign. Thus, the overhead of DiffLoc is very competitive

with these methods, but the accuracy of DiffLoc is much

better.

In addition, we investigate the relationship between the

parameter count of APR and performance. APR captures

scene information by an encoder and the map scene to pose

by a regressor. As demonstrated in the literature [12], (1)

the regressor is primarily responsible for memorization, and

(2) increasing the number of parameters of the regressor en-

hances its memorization capacity. To ensure localization

accuracy, they recommend the regressor parameter should

be increased with larger scene sizes. We investigate the re-

lationship of DiffLoc performance with parameter quantity

by modifying the number of Transformer layers n in the

denoiser on the NCLT dataset. As shown in Tab. 6, when

n = 2, the performance is greatly reduced. The perfor-

mance is relatively accurate when n = 4. These results

show the same trend as the literature [12]. In this paper,

to preserve the localization accuracy and real-time perfor-

mance, we set n = 8.

4. Visualization

We show more visualization results of the top 4 methods in

the main paper (NIDALoc [13], HypLiLoc [11], SGLoc [6],

and the proposed DiffLoc) in Fig. 3 and Fig. 4 on the Oxford

and NCLT datasets, respectively.

Clearly, the trajectories predicted by DiffLoc closely

overlap with the ground truth, with fewer outliers compared

with other methods, demonstrating its great effectiveness.

It is important to note that certain regions (approximately

frames 4300 to 4500) on the 2012-05-26 trajectory of the

NCLT dataset, absent in the training data, contribute to the

presence of numerous outliers, as depicted in the last row

Layer number 2 4 6 8

Params 27M 32M 36M 40M

Results 6.75m/11.88◦ 1.30m/2.60◦ 1.26m/2.43◦ 1.19m/2.31◦

Table 6. Localization results with different parameter quantity.

of Fig. 4. Previous studies [10, 12] indicate that regression-

based localization methods are not guaranteed to general-

ize from training data in practical scenarios. In this paper,

the proposed DiffLoc can efficiently identify these regions

with uncertain results, as shown in Fig. 6 of the main paper,

which bridges the gaps in practical applications.
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Figure 3. LiDAR localization results of on the Oxford [2] dataset. The ground truth and prediction are black and red lines, respectively. The

star denotes the first frame. The caption of each subfigure shows the mean position error (m) and orientation error (◦). For each trajectory,

we highlight the best and second-best results.
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Figure 4. LiDAR localization results on the NCLT dataset [7]. The ground truth and prediction are black and red lines, respectively. The

star denotes the first frame. The caption of each subfigure shows the mean position error (m) and orientation error (◦). For each trajectory,

we highlight the best and second-best results.


