Supplementary Material Diffusion-FOF: Single-view Clothed Human Reconstruction via Diffusion-based Fourier Occupancy Field

Yuanzhen Li, Fei Luo*, Chunxia Xiao* School of Computer Science, Wuhan University, China

yuanzhen@whu.edu.cn, luofei@whu.edu.cn, cxxiao@whu.edu.cn

1. Implementation Details

We implemented our method using a single NVIDIA GeForce RTX 3090Ti GPU with the PyTorch framework [4]. We use Adam optimizer [3] to optimize the back-view image and geometric prediction networks. In the back-view image prediction, we set the learning rate to 10^{-4} , the batch size to 6, and 14 epochs. In the geometric reconstruction, we set the learning rate to 4×10^{-5} , the batch size to 8, and 20 epochs.

2. Training and Testing Details

We provide the pseudo-code of the geometric training and test procedures in Algorithm 1 and Algorithm 2, respectively. Algorithm 3 serves as a supplementary component to both Algorithms 1 and Algorithm 2. Figure 1 illustrates the generation process of the geometric model during inference.

3. More Geometric Reconstruction Results

Figure 2 and Figure 3 provide more geometric results to demonstrate the superiority of our method further. In Figure 2, the second input image is from Renderpeople [5], and the other two input images are from 2K2K [2]. Compared with these methods, our method can effectively reconstruct loose-fitting clothes and generate more realistic details in invisible areas. In Figure 3, the first input image is from 2K2K [2], and the other images are from the Internet. Compared with these methods, our method can effectively reconstruct the geometry of children and generate more realistic details in invisible areas.

References

 Qiaojun Feng, Yebin Liu, Yu-Kun Lai, Jingyu Yang, and Kun Li. Fof: Learning fourier occupancy field for monocular realtime human reconstruction. In *NeurIPS*, 2022. 3, 4

- [2] Sang-Hun Han, Min-Gyu Park, Ju Hong Yoon, Ju-Mi Kang, Young-Jae Park, and Hae-Gon Jeon. High-fidelity 3d human digitization from single 2k resolution images. In *CVPR*, 2023.
 1
- [3] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015. 1
- [4] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In *NeurIPS*, 2017. 1
- [5] Renderpeople. https://renderpeople.com/, 2014. 1
- [6] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pifuhd: Multi-level pixel-aligned implicit function for high-resolution 3d human digitization. In *CVPR*, pages 84– 93, 2020. 3, 4
- [7] Yuliang Xiu, Jinlong Yang, Xu Cao, Dimitrios Tzionas, and Michael J. Black. ECON: Explicit Clothed humans Optimized via Normal integration. In *CVPR*, 2023. 3, 4
- [8] Xueting Yang, Yihao Luo, Yuliang Xiu, Wei Wang, Hao Xu, and Zhaoxin Fan. D-IF: Uncertainty-aware Human Digitization via Implicit Distribution Field. In *ICCV*, 2023. 3, 4
- [9] Zechuan Zhang, Li Sun, Zongxin Yang, Ling Chen, and Yi Yang. Global-correlated 3d-decoupling transformer for clothed avatar reconstruction. In *NeurIPS*, 2023. 3, 4

^{*}Chunxia Xiao and Fei Luo are co-corresponding authors

Algorithm 1: Training

```
def train(I_a, I'_b, fof_gt) :
  # Wavelet transform
  wavelet_gt = DWT (fof_gt)
  # Encoder image features
  feat_high, feat_low = image_encoder (I_a, I_b')
  # Add noise to wavelet_gt
  t, eps = uniform (0, 1), normal (mean=0, std=1)
  wavelet_noise = sqrt (alpha_cumprod(t)) \times wavelet_gt + sqrt (1-alpha_cumprod(t)) \times eps
  # Predict wavelet
  wavelet_pr = Denoise-Net (wavelet_noise, feat_low, t)
  # inverse wavelet transform
  fof_pr = IWT (wavelet_pr)
  # fof refinement
  fof_refine = refine-Net (fof_pr, feat_high)
  # Set loss
  loss = loss_function (wavelet_pr, wavelet_gt, fof_pr, fof_refine, fof_gt)
  return loss
```

Algorithm 2: Testing
def test(I_a, I'_b , steps, td=1):
steps: sample steps; td: time difference
<pre>wavelet_t = normal (mean=0, std=1)</pre>
Encoder image features
feat_high, feat_low = image_encoder (I_a, I'_b)
for step in range (steps) :
Time intervals
$t_now = 1 - step / steps$
$t_next = \max (1 - (step + 1 + td) / steps, 0)$
<pre># Predict wavelet from wavelet_t</pre>
<pre>wavelet_pr = Denoise-Net (wavelet_t, feat_low, t_now)</pre>
<pre># Update wavelet_t at t_next</pre>
<pre>wavelet_t = update (wavelet_t, wavelet_pr, t_now, t_next)</pre>
$fof_pr = IWT (wavelet_pr)$
<pre>fof_refine = refine-Net (fof_pr, feat_high)</pre>
return fof_refine

```
Algorithm 3: Update

def alpha_cumprod (t, ns=0.0002, ds=0.00025):

# cosine noise schedule

n = torch.cos((t + ns)/(1 + ds) × math.pi/2)<sup>-2</sup>

return -torch.log(n-1, eps=1e-5)

def update (wavelet_t, wavelet_pr, t_now, t_next):

\alpha_{now} = alpha_cumprod (t_now)

\alpha_{next} = alpha_cumprod (t_next)

eps = \frac{1}{\sqrt{1-\alpha_{now}}} \times (wavelet_t - \sqrt{\alpha_{now}} \times wavelet_pr)

wavelet_next = \sqrt{\alpha_{next}} \times wavelet_pr + \sqrt{1-\alpha_{next}} \times eps

return wavelet_next
```

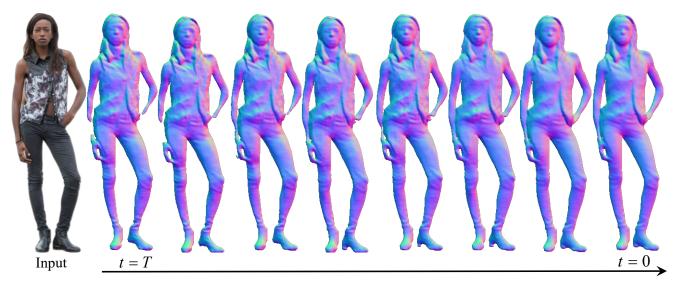


Figure 1. The geometry generation process during inference.

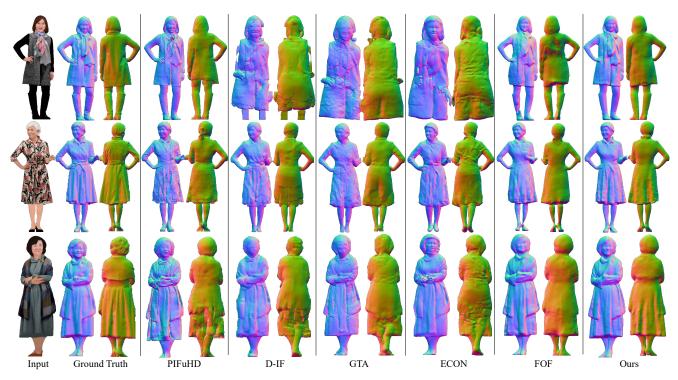


Figure 2. Qualitative comparison with state-of-the-art single-view clothed human reconstruction methods: PIFuHD [6], D-IF [8], GTA [9], ECON [7], and FOF [1].

Figure 3. Qualitative comparison with state-of-the-art single-view clothed human reconstruction methods: PIFuHD [6], D-IF [8], GTA [9], ECON [7], and FOF [1].