Supplementary Material

A. Full Results for the Real Data Experiment

We record the full results for our real data experiment in Tables 3 and 4.

LongSync MultiSync-New IRLS-New MPLS on full dataset | Remaining
Data _ i _ . _ R _ .
n |k e e t e e t e e t e e t cameras

Alamo 627 |10| 2.67 1.03 6.68 | 321 1.81 80.77 | 274 1.14 358|203 095 53.67 0.70
Ellis Island 247 171107 060 105|181 137 2446|129 092 079|089 048 440 0.66
Madrid Metropolis 394 | 61298 189 128 | 442 392 1476|335 227 100|210 1.10 5.76 0.53
Montreal Notre Dame | 474 | 8 | 3.89 045 296 | 434 1.05 39.17 | 400 0.60 1.86|0.78 041 1495 0.70
Notre Dame 553 |11 1.00 0.60 526|193 1.64 11198| 140 1.12 3.04 | 096 050 52.68 0.66
NYC Library 376 | 6 | 205 1.09 120|256 1.63 1457|231 147 083|156 101 5.02 0.56
Piazza del Popolo 3457|1383 062 139|407 107 2291|389 083 098 | 1.61 057 6.26 0.61
Roman Forum 11021 6 | 247 1.61 5.60 | 2.84 198 16.13 |255 1.68 321|180 133 2405 0.48
Tower of London 489 51285 218 182|349 266 843 |294 220 1.17 250 213 563 0.60
Union Square 930 | 4 |8.02 431 259|779 393 492 |776 373 173|450 353 720 042
Vienna Cathedral 918 | 9 13.65 058 566|434 157 5645|376 0.77 336|130 053 54.62 0.48
Gendarmenmarkt 742 | 6 [84.95 77.60 3.21 |83.30 80.48 15.75 |74.71 84.23 227 |48.52 40.16 13.58 0.47
Piccadilly 2508| 9 | 5.07 1.75 2256|543 246 6589|521 208 1072|220 145 42940 0.45
Trafalgar 543319 | 712 233 7933|1001 5.19 91.69 | 725 244 4159 1.88 1.17 1796.41 0.38
Yorkminster 458 | 61197 136 252|233 174 1497|201 138 189|163 131 7.05 0.61

Table 3. Results for PhotoTourism. For each dataset, € and é indicate the mean error and median error of the output absolute rotation estimates
measured in degrees, and ¢ is the total runtime of each method measured in seconds. The last column indicates the remaining portion of cameras
for each dataset after adpoting our new graph preprocessing method.

Data LongSync-Naive MultiSync IRLS MPLS on full dataset
n |k| e é t e é t € é t € é t
Alamo 627 |10| 745 111 891 |7.74 156 81.73 | 756 130 5.71 |3.67 1.02 5543
Ellis Island 24717384 069 228 | 524 229 2549|412 1.09 177|282 050 572
Madrid Metropolis 394161985 292 296 |1027 391 1546|1013 3.61 224|583 131 7.63
Montreal Notre Dame | 474 | 8 | 593 0.61 5.17 | 649 144 4120|606 0.87 337|113 050 1840
Notre Dame 553 |11| 457 072 856 | 497 128 11781482 109 519|271 064 5794
NYC Library 376 | 6 | 615 1.65 277 | 7.13 296 1558|628 192 207 |3.11 130 592
Piazza del Popolo 345171637 099 284 [10.18 7.09 3335|723 1.18 207|344 0.86 7.19
Roman Forum 11021 6 | 598 1.80 10.15| 6.61 257 19.17 | 606 193 581|287 141 2733
Tower of London 480 | 51646 295 399 (703 343 977 | 674 324 277|396 244 653
Union Square 930 | 4 |125.68 5.68 595 |27.64 724 734 2531 574 420|614 370 852
Vienna Cathedral 918 | 9 11326 1.60 1031 [13.74 237 62.84 1347 197 633 |6.19 131 58.05
Gendarmenmarkt 742 | 6 |74.25 72.34 640 |74.63 71.53 17.56 |76.58 81.32 4.33 [39.70 1048 17.13
Piccadilly 25081 9| 9.58 2.82 4217|991 3.19 72.09 [10.66 3.78 19.39| 445 2.08 455.83
Trafalgar 5433191 9.61 327 130.55|10.23 4.16 112.62|9.75 344 6049|549 439 1929.21
Yorkminster 458 | 61825 1.69 506 | 880 247 1659 | 828 1.74 3.87 | 355 158 831

Table 4. Results for PhotoTourism where all methods are performed without our graph preprocessing method. For each dataset, € and é indicate
the mean error and median error of the output absolute rotation estimates measured in degrees, and ¢ is the total runtime of each method measured
in seconds. The last column indicates the remaining portion of cameras for each dataset after the camera pruning step of our improved pipeline.




B. Proof for the Formulas of g. and f. and their Computation Complexity

In this section we prove the formulas and time complexity for f. and g. defined in section 3.
For ¢ =3, since all 3-cycles are simple, fo(W)(i,5) =3 pcce [Leern (i) = 2onepn Wikwh; is exactly the ij-th entry of W2,

and go(W.R)(1,) =3 p.cce = 2pe Wik Rirwi; Ry is exactly the j-th block of P2,

For ¢ >4, there are redundant cycles in Cf;, i.e. cycles that are not simple. We follow the argument in [35] to compute FeW)(i,9)
and g.(W,R)(i,j). For example, the cycle ikij is redundant since the node 7 repeats twice. We say this cycle satisfy the partition
0+2+41 of c—1, in that the number of steps from the first node to the repeated node is 0, the number of steps from the repeated
node to its second appearance is 2, and the number of remaining steps to the last letter is 1. Some cycles may satisfy more than 1
partition. For integer 1 <a<c—1,let Cy; , be the set of redundant c-cycles satisfying a partitions. Let g. be the number of admissible

partitions of length ¢, i.e. partitions that correspond to a redundant cycle. Then the function f, and g, can be written as follows:

qe
F W)@ =Wy (<) > [ we (15)
a=1 LECS,; ,e€L\{ij}
qe
9. W.R)(i,j) =P+ (-1)* Y J] weR.. (16)
a=1

LGij)aeGL\{ij}

For ¢ =4, the set of admissible partitions is {0+2+1,142+0}, therefore ¢4 = 2. By enumerating the possible cycles for any
combination of such admissible partitions, we know that the set C}; ; = {k € [n] :ikij } U{k € [n]:ijkj}, and the set C;}; , = {ijij}.
Therefore we can simplify the above formulation as:

FA W) (7)) =W = " wipwgiwig— Y wijwjswe; +wijwsiw; (17
ke€n] k€n]
9e(W,R)(i,j)=P°' - Z Wik Wi Wij R Ry R — Z Wi WKW Rij R Ry j+wijwiiwi; Rij Rji Rj. (13)
ke€[n] k€[n]

This can be vectorized as
f-(W)=W3_dWHW —-Wd(W?)+ W3 (19)
9.(W,R)=P?—d(P?)P—Pd(P?)+P®. (20)

Using similar arguments as above (one may refer to [35]), we have the formulas for ¢ =5 and ¢ = 6. The formulas for c=5
are presented in Table 1. The formulas for c=6 are as follows:

fo(W)=Wd(W*)+d(WHW + W2d(W3)+d(W W24 WA(W W2 L W2d(W)W + Wd(W3)W

+W2OWB3W O (W24 2Wd(WH oW 2 L2d( W2 )W o W2
+4d(W2 )W B AW Bd(W?) - WA(WA(W W) —d(W (W) W)W
—2W(WP2oW?)-2(WP2oW?)W - WP2W?2-_W?2W 2
—2WA(W?)? —2d(W?)*W —W (W oW?) —(WoW))W -W o W? 2WW? —d(W)*Wd(W?)
~WoW?2oW2-WW3W —2W oW?20W?2 —4W©°

9c(W.R)=Pd(P*)+d(P*)P+P?d(P?)+d(P?)P?+ Pd(P*)P?+ P*d(P*)P+Pd(P*)P
+P2OP®3 3P0 (PY%)?42Pd(P?) 6 PY?4-2d(P*) Po P™?
+4d(P?) P93 +4P®3d(P?)— Pd(Pd(P*) P)—d(Pd(P?)P)P
—2P(P*?0 P%)—2(P“?*0 P*)P—- P®*P? - P> P®?
—2Pd(P?)?*-2d(P?*?*P—-P(PoP?)—(PoP?*)P—-PoP?-2PY?P?—d(P)*Pd(P?
—PoOP’0OP?-PPP-2PoP?>0OP?—4P%



The computational time complexity of the previous cases for f. and g. are O(r(n)) and O(r(dn)), respectively, since computing
fe by the formula above only requires standard matrix operations between n X n matrices, and computing g. by the formula above
only requires standard matrix operations between dn x dn matrices. For the case ¢>7, [47] gives an estimation on the upper bound
of the computational time complexity as O(nl(¢+3)/2)),

C. Main Theory

We formulate theory for adversarial corruption in Section C.1 and for the uniform corruption model in Section C.2. The latter theory
extends the one stated in Section 4.

Both settings use the following common notation. Let E, be the set of good (clean) edges, £, be the set of bad (corrupted) edges,
and N;; be the set of simple c-cycles containing ¢j. Let G be the set of good simple c-cycles with respect to ¢5. That is, for any
cycle L €GY;, Lis simple of length c and L\ {i;} are all clean.

C.1. Theory for Adversarial Corruption

In this section we focus on the adversarial corruption model [25]. The adversarial corruption model makes no assumption on the
graph topology or the corrution pattern. The only assumption is that for each ij € Ey, g;; =g;;, and for each ij € Ey, g;j # g;;. Since
LongSync is a modified and vectorized version of CEMP for higher-order cycles, it inherits the robustness of CEMP to adversarial
corruption. Define A =max;;cp|By;|/|Nf;| where Bf; = N7 \GY; is the set of bad cycles with respect to ij (namely at least one
of the other (¢—1) edges in the cycle are corrupted). In the scenario of adversarial corruption with an assumption on A, we can
guarantee linear convergence of LongSync as follows.

Theorem C.1. Assume data is generated by the adversarial corruption model with \ < 2 Assume the parameters {5 } ;=5

1
1+(c—1)2
of LongSync with c-cycles satisfy By <1/(c—1), By1=rB; and 1<r< 5,/ % Then the corruption levels {51(';) }Yijek estimated
by LongSync satisfy the following equation:

ax|s)’ —s*.| <
max |59 — s3] <

1

Proof. Let e;;(t) = s\ — s}, and €(t) = maxje pe;;(t). By the fact that |d, — s3] < s, G, C Ng; and s}, =0 for L € G5, we
obtain that

ZLENC st d2
RO
ZLENF,e Prsy

(eij(t+1)2 =5t —s 2 =|

< ELGNCe Bt L |dL 81_7|2

ﬁts(t)
. €
ZLEN{]»

ZLeBce Pricerce®(sy)?
= Ticg e et

1 2[3, c—1)e(t) —f¢sT
=logl¢ 2 )

LeBg;

We prove the theorem by induction. Note that the case ¢t =0 is equivalent to €(0) <1/(c—1) 5y, and this immediately follows from the
fact that 0 <¢;;(0) <1 and the assumption 5y <1/(c—1). We next prove e(t+1) <1/(c—1)S¢41 from e(t) <1/(c—1)5;. By the in-



equality above, the induction assumption, the fact that 2%e” < 4/(az)? with z= s} and a= /3; and the definition of \ and r we have
1, 4BG 4B 4 1 1

-ec- = = .

G5l B IGGI8E ~ (=N Bir(e=1)7 By (e—1)?

The theorem follows by taking the maximum of the left hand side and then the square root of both sides of the above equation. [

(23)

(eij(t+1))*<

C.2. Theory for Uniform Corruption Model

Throughout the rest of the paper we use P(A) to denote the probability of event A. Let po = P(g;; =g;;) for each edge ij € Ep.
By the choice of corruption model, py only depends on the group G. Let ¢, =1—q+qpo=P(ij € E4|ij€ E). Let g =1—q. We
remark that for rotation synchronization (in fact any Lie group synchronization), ¢, = g, and pg=0.

Recall for each e € E, s is the ground truth corruption level of edge e. For L = (iky,kiko, - ,kc—2j) € ij, we denote
87, = D eern (ijy S To state our main theorem, we let F(8) ={ f-(z):=e~ 7 *?r%2? /4:7> 3} and V(B) =sup, -, 5 Var(f-(s}))-
Due to the model assumptions, the distribution of f-(s7 ) is independent of the choice of L& N

Using the above notation, we formulate the following theorem, which generalizes Theorem 4.1

Theorem C.2. Let 0<r<1, 0<g<1, 0<p<1. Assume we use LongSync with cycles of length c and n/logn=((pqe)~ = )
for some € > 0. Assume

1 g g
0<—< g , (24)
Bo ~16(1—g5 ) (c— 124,
c—1
r 4qy
v <— , 25
(B1) 16(c—1) 1— 1—¢5 1 )
1/Bey1=r/Bs forall t>1, (26)
1—qg¢™ 1)2
: c—2—e€, c—1 >( 4y
min(np,n® 2P ) 2 @7)
qx T
Then with probability at least 1 — 4cn? exp (—Kng(pq*)%n) — 2% - exp (—ne/ (C’l)—kclogn) -

n exp(fl’“—gmm(np, e 2*epcfl)V(Bl)) —2n2-ex (fmln(1+ 2(C_Ci%)min(np,nC*Q*EpC*1)), where n9,m, K ,eg,vg are

absolute constants, we have max;je | sy; — SZ(-t) |< ﬁ SJorallt>1.

Remark C.3. As is shown in [25], for G € SO(3), V(8) ~ O(373). Therefore n/logn ~p~(c~D/(c=2=)¢ _7(0 D/3(e=279) i the
minimal sample complexity dependence for G =.SO(3) such that with high probability, the conclusion of Theorem 4.1 holds true.

C.3. Proof of Theorem C.2

We adopt the proof framework of [25]. The major difficulty of the proof is the dependence in the cycle inconsistency measures of
cycles in N;; when ¢ > 4. For example, the cycle inconsistency measure of a 4-cycle Ly = (ik1,k1k2,k27) is not independent with that
of Lo = (tky,k1ks,ks7), while for a pair of 3-cycles their ratios are always independent. This means that the required concentration
inequalities cannot be obtained by directly applying the standard Chernoff bounds. Nonetheless, we have integrated various
mathematical techniques from [3, 7, 22-24, 48] to derive Theorem 4.1, which offers improvements over theorem 7 presented in [25].

For convenience for any ¢ > 3, we define a c-path as a path that involves c vertices, and we define an 7j,c-path as a c-path that
starts from ¢ and ends at j. We extend the definition of V}; as the set of 4j,c-paths in graph G.

We first prove that with high probability, the number of c¢;-cycles concentrates around its mean for any ¢; < ¢. More specifically, let
Ne, = (n—2)(n—3)(n—4)-(n—c;+1) be the number of possible ij,c;-path candidates, and m,, =max(p° ~'n,, ,n¢). Therefore
the expected number of 7j,c; -paths is p°* ~!n,, . For any €,7>0 we define the (e, )-regular Erd6s-Rényi graph condition as follows:

Definition C.4. Let § =sup{d>0s.t. np' ™ /logn— oo} and cy=[2+0"1]. A graph G satisfies the (¢, )-regular Erd6s-Rényi
graph condition if and only if the following conditions hold true:
* Forany i#j €[n] and ¢; > ¢g,

(1=m0)me, <|Nij | < (1+n0)me, (28)

and
(1=n0)gs* e, <IGEH < (1470)g2 ™ ' me,; (29)



* For any i#j € [n] and ¢1 <co,
0<|NE | <me,. (30)

‘We have the following theorem on the phase transition of the number of c-paths:
Theorem C.5. Assume G is generated with the uniform corruption model UCM(n,p,q), and €,n>0 are constants. Then the (e,n)-
2 c— 2
regular E-R graph condition holds with probability at least 1 — cn?exp(— % pn) —cn?exp(—Kng pcfé n) —cn?exp(— % Pgsn) —
cn?exp (—Kng (pgs) = n) —2e%cn’exp(—n/ ¢~V +(c—2)logn), which is almost 1 by the condition n/logn=((pqy) " eS2me ).

The proof of Theorem C.5 is put in section D. Based on this theorem, we have a concentrated ’initialization’ of corruption level
estimates after the first iteration:

Theorem C.6. (Initialization) Assume the (e,1o)-regular E-R graph condition holds. Recall that the corruption level estimation
of LongSync with cycle length c at t=0 is

€2y
Denote eg =Ed3 and vg = Var(d%). Then for any n>0and ij € E,
ne neg. . C9e o
P(|(s15))? ~E(si5 )| >nE(s(;)* ><2exp(—;1n<1+2é>m1n<np,nc p 1)). (32)
Let A=max;jcp|By;|/|INf;| where Bf; = NS \Gy; is the set of bad ij,c-paths. To prove the linear convergence, we need the
following three lemmas:
Lemma C.7. If maxije | (s(y) )2~ E(s!; )| < 550 then
A 2(c—1
max|3§1-)—s;f‘~ </ (071 ) (33)
ijeE J J 17A qg /80
Lemma C.8. Assume that maxijeE\sgjl.) =83l <1/(2(c=1)p1), Bt =7P4+1 fort>1, and
! D ePri(sy)’< L forallt>1 (34)
zgeE\ ”|LEB”C Mpj? z
where M =4(c—1)2eA/((1—\)r?). Then the LongSync corruption level estimates satisfy
max| -5 < ir"’_l forall t>1 (35
ijeE By =

Lemma C9. 1f either sj; for ij € E is supported on [a,00) and a > 1/|Bf;| or @ is differentiable and ' (x)/Q(z) < 1/ for
x < P(1), then there exists an absolute constant X such that

P| sup Z fr(s7)>V (8
fre]:(ﬁ) lj LEBC

JrK-// IOgmin(np’nC*27epcf1)
min(np,nc—2-cpe—1)

In2
<exp (— n7min(npmc_Q_Epc_1)V(ﬁ)

(36)

where F(B) ={f-(v)=e 727222 /4:7 > 3}.



Lemma C.7 and C.8 are direct extensions of lemma 4 and lemma 5 of [25]. Lemma C.9, however, involves the extension of
theorem 2.3 in [3] to the supremum of locally independent empirical processes and Hajnal-Szemerédi theorem for equitable coloring.
We refer the reader to section D for the proof of these lemmas.

Proof of the main theorem. By the regular E-R graph condition, we can choose appropriate 77y so that

1 qc—l 1—\ qc 1
———< <4—= 37
e D W B 47

To guarantee the condition (34) of Lemma C.8, we need to choose i such that V(8;) < e/2M and n large
enough such that log(min(np, n°2=¢p¢~1))/ min(np, n° 2 p°~1) < ¢€2/4K"M? By the assumption that
V(B1) < (rgc=1)/16(c—1)(1—¢c™ 1), M =4(c—1)%eA/((1—\)r?) and (37) we know that V' (3;) <e/2M. By the assumption that
min(np,n¢=2=pc=1) > (1 —qi’l)Q/qf(c_l)TQ we know that log(min(np,n®=2=¢p~1)) /min(np,n°=2=pc~1) < €2 /JAK'? M2
Therefore the condition (34) of Lemma C.8 holds true.
On the other hand, by Theorem C.6 with n=1/2(c—1)8, we know that w.h.p. the condition of Lemma C.7 holds true. By the

assumption that 1/8y < g5~ 1q¢~1/16(1—¢5~1)(c—1)?B1, we know that the conclusion of Lemma C.7 implies the first assumption
of Lemma C.8.
Therefore, the proof of the theorem follows from the conclusion of Lemma C.8. O

D. Proofs of Auxiliary Results

We provide additional results for auxiliary theorems and lemmata used in the previous section.

Proof of Theorem C.5. We have the following basic lemmas:

LemmaD.1. (Concentration of number of paths of length > ¢y — 1 with fixed endpoints) Let 0 < ¢ < 1,0<p<1,n €N with np>0(1).
Assume data is generated by UCM(n,p,q), and ¢ > cy. For any 79 >0, there exists a constant K >0 that only depends on c, such that

2

P(ING| =9 e <mp*~"ne) <exp(—2pn) (38)
P(ING|~p* e >nop™ i) <exp(—Knip=2n) (39)
for any fixed i#~j €V, and

2
P(ING|=p* " ne <nop®ne) < | Elexp(— 22 pn) (40)

C

c—1

P(|ij|—pc_1nc>n0pc_1nc)<|E|exp(—Kn§pcjn). 41
Proof. Let M§: = {(i,k1, ko, ,ke—2,7) : i,k1,k2, ,ke—2,j € [n] are different}. Note that | 9| = ZQGMC I, where I, =

1%1eElklkzeE...1kC73k6726E1k072jeEfora:(@’kl’k%...,kc_g,]) For any ov,3 € M3, define w= EQGMCEI Zaerij_lz

p°" .. Letus write a~ S if o, B € M;; with at least one common edge, and define §=(3_,, . sELa 3) /w (This sum should be
interpreted as the sum over all pairs («,/3), so each pair is counted twice.) By theorem 1 of [22], we have the following inequality:

PNG|< (=)™ ne) Sespl— 57 ) @)

Denote |\ 3| as the number of nodes that belong to /3 but do not belong to «. By the definition of 4, we have the following estimate:



§=(> El.I)/w

an

c—3
XY X ELL

a€Mf k=la~p and |\ B|=k

M°"3

U Z Z karcf 1

k=la~g and |a\B|=k
c—3

(n—2)(n—3)-(n—c+1) e (11— 3o (11— ke — 1) e
_pcfl(an)(n73)~~(nfc+1);( 2)( 3) ( k 1)10

< e c(n—2)(n—3)-(n—c+2)p*3

<e(n—2)(n—3)(n—c+2)p°" R

= et )p’ “3)

Plugging (43) to (42) gives:

oW )
(1+5)

77
<exp(—z—6)
now(n—c+1)p

4dew
2
770”]7)
5¢ 7

P(IN5| < (1=m0)p° 'ne) < exp(—3

<exp(—

)

<exp(— (44)
Therefore inequality (38) is proved, and inequality (40) follows from a union bound argument.

For the upper tail, let A be an arbitrary subset of {k1,ko,,k.—2}, the set of free vertices of an ij,c-path. Denote M4 as the
expected number of 7j,c-paths (iky,k1ks,-,k.—27), where the vertices in A are fixed, and let My = max| 4;>,M. We have the
following calculation:

c—2—k,c—1—k k<c—3
Mk:{n P e (45)

1, k=c—2

Let \=n3(n—c+ 1)p%. By ¢> o, we know that A=w(logn). Also, by setting My =M and M, = MyA~* we know that for
all 0<k <c—2, My >My,. Therefore we can apply theorem 1.2 in [48] and get the following inequality

:) (46)

where K is a constant that only depends on c. Let K = K{/2. By the order of ¢ we know that

P(|Nzcj| _pc_lnc > nonc) < eXP(—Kong (n_c+ 1)p2:
(NG| =9 ne > mone) < exp(—Kngnp™=). )
Therefore inequality (39) is proved, and inequality (41) follows from a union bound argument. O

LemmaD.2. Let0<¢<1,0<p<1,neN withnp>©O(1). Assume data is generated by UCM(n,p,q), ¢>> ¢, and K is the constant
in Lemma D.1. For any 7 > 0, we have

2
P(GS;|—p g™ 1nc<nopc*1q§f*1nc)<eXp(*%pqm) (48)

P(IG5|=p" 1S e >nop® ¢ ne) <exp(—Knjpg.n) 49)



for any fixed i j €V, and

2

C C— CcC— C— CcC— T]
P(IG5|=p" S e <mop® 'S 'n )<|E|exp(—gipq*n) (50)
P(IG5;|—p° g5 e >nop® ™ ¢¢ " ne) < | Elexp(— Knppg.n). (1)

Lemma D.2 is proved by replacing p with pg, in the proof of Lemma D.1.

To count the shorter paths which has a vanishing expectation when n tends to infinity, we need the following concentration
inequality:
Lemma D.3. (Concentration of number of paths with length <c¢y—2) Let 0<¢<1,0<p <1, n €N with np>©O(1). Assume
data is generated by UCM(n,p,q), and ¢ < cg. For any € > 0, there exists a constant K’ >0 that only depends on c, such that

1, € 2 _€/(c—1) _
P(INj;|> K'n®) <2e“exp(—n"“"") +(c—2)logn) (52)
for any fixed i#j €V, and
P(IN§| > K'n®) <2¢?|Elexp(—n/“") +(c—2)logn). (53)
Proof. Define the multivariable polynomial f({Zpg}preem)) = 2 ac Mg Tas where T, = Tik, Thiky - Th,_p; fOT

a= (i,kl,kg,'",]{c_g,j) in M{; = {(i,kl,k‘g,'",k‘c_g,j) vi,k1,ko, ke—o,] € [n] are different}. Note that |NZZ‘ = f({lpqu}p7gqe[n]).
Let AC {zp4cr:p#q€[n]} be a subset of the variables of f, and fa({Zpq }p£eein]) be the partial derivative of f({Zpg}p£eem))
with respect to all variables in A. Let 0a|Nj;|= fa({1pge £ }prqefn))- Define By =max 4>, E(04|Nj;|). By the main theorem
in [24], we know that

P(IN§;— Eo| > K'n'“™D\/ Ey By ) < 2¢%exp(—n* +(c—2)logn). (54)

Because ¢ < cp, we know that for any & € N, max|4j<.—2E(04|Nyj|) = o(1) and max|aj—.—1 E(9a|Nj;|) = 1. Therefore,
Ey=E; =1. Plugging these values into inequality (54) and substituting € with ¢/(c—1) results in inequality (52). Inequality (53)
is obtained from a union probability bound argument. O

With the estimates above, the regular E-R graph condition holds with probability at least 1 — n? exp(—g—ipn) —

c— 2 c—
nQeXp(—Kngch; n)—nexp(—2 pg.n) —nexp(—Knj (pg.) = n)—2e?n?exp(—nc+(c—2)logn).
O

Proof of Theorem C.6. For any L€ N{; and pg € L, we say L’ is correlated with L if LNL’ is nonempty, and L’ is correlated with
L\{pq} if (L\{pg})N L’ is nonempty. We denote C', as the set of ij,c-paths in N that is correlated with L, and denote C7\ (4} as

the set of ij,c-paths in N; that is correlated with L\ {pq}. With the regular E-R graph condition, we know that for any L € N},

ICLI< D Cr\ gy (55)
pqeL

<M1 +HM1Me_2+MaMe_3+-+Me_2M1+Me_1 (56)

<CMe_1. (57

Denote Ay =maxren, [Cr|. Then we know that Ay < cmi—y < cmax(n;n~ 3p=2). We apply theorem 2.5 in [23] on ZLeNC

and ) ;o N, (—d?) and get the following inequalities:

2
|N§;lvg nEY S pene d7,
di, > (14n) d7) <exp(———( i) (58)
L;V:L Lg\;ij Ay |N1§-|Ug(1+A1/8|NiCjD
and . 2
IN;lvg B2 pene A
di<(1=mE 3 di)<exp(~—3 =l ) 59
MR A NGt 5,/

where p(z) = (1 +x)1n(1 +2) —x. Note that <p( ) > zIn(1 +x)/2 for any = > 0. By the regular E-R graph condition we have
NG| > (1—no)n°~?p°~, and therefore A, /|NJj| <max(1/(n°"?p“"),1/(np))/(1—no) <1. Also, since all the d7 s for L€ N



follow the same distribution with mean eg and variance vg, we know that £, - NC = |Nf;leg. Therefore RHS of (58) and
(59) can be upper bounded as follows:

|Nfi|vg UEELeN% di
Ay 2INGlug(1+A1 /8ING))

nEZLeN;} d%
)

RHS of (58) and (59) <exp (—

Nfi|vg(1+A1/8|N,

,i, n|Nicj|eg ln(l neg )
Ar 2(1+Aq/8|Ng]) vg(1+A1/8|Nf )

|
gexp( neg|N; lln(1+neg)>
(-

4A1 2’[)g
neg(1—no)n2p*~" neg
< In(1+-+-2
=P 4dmax(n€,nc—3p°=2) ( +21}g)
<exp (—ngecgln(l—l— gz)min(np,nc_%epc_lo . (60)
Combining the upper and lower tail bound together yields
P(] Z d2 —E Z di|>nE Z d3) < 2exp(— e gl (1 225 Ymin(np,n° 2" pt)). (61)
LENG; LENG; LENG;
Then Theorem C.6 follows by (31). L]

Proof of Lemma C.7. Denote ;; = (s (0)) —E(s (0))2 for ij € E and y=max;;c g |7i;|, so that the condition of the lemma can be

written more simply as 1/2(c—1)/3y > . By rewriting E(s 1('j)) as ¢5~ ' (s3;)°+ (1—¢5 ") 2g +i; and invoking lemma 1 in [25]
and equations (6) (7), we have the following bound:

7’30\/Zeeng (s3)2+(1—qg™ 1)29+’75 |2
|5(,1,)_Si*,|2 ZLENC € | — s3]
17

§ e ﬁozeg[ \/qg Se) (1 qgc )ZQ e
LENCJ

—B S (%) 24-(1—q5 ) 2g+Te [ o* \2
S ens € 0 eerVay (52 H(1-a5 2o+ (g% )

(62)

S pege e Eeen Vi DM Dag e

By first applying the facts: |y.| < v and s% = 0 for e € L where L € G¢,, and at last the inequality xze ** < 1/(ea) with

=", (s5)? and a=BoqS " /2, we obtain that

2]’

ZLGije—ﬁozeeL\/q;—l(s:>2+<1—q;-1>29—7(82)2

(M) x g2
—sh2<
Y |G ePole=DV/(1=a5™N)zaty

ZLEB%e—ﬁozeea\/q;*<sz>2+<1fqg*1>zgfvf¢<1fq;*1>@+v>(52)2
- e
) ZLerje*ﬂcheL(q§‘1(82)2*2v)/2(82)2
- |G
< 62Bo(c—1)VZLerje—Boq; IEGEL(82)2/2(C_1)266L(5:)2
- |G
2(c—1)|Bjj|
TGS 1Bogs

(63)



The lemma is concluded by applying the union bound on ¢j € E' and taking the square root on both sides of the above inequality. [

Proof of Lemma C.8. Let €;;(t) = |sf§) —s7;| and €(t) =max;je pe;;j(t). We prove this lemma, or equivalently e(t) <1/2(c—1)5;
for all ¢ > 1, by induction. We first note that (1) < 1/4/3; is an assumption of the lemma. Next we show that e(t+1) <1/2(c—1)8:41
if e(t)<1/2(c—1)0;.

By the fact that |d, —sj;| < s, G; C Nf; and s7, =0 for LeGY;

i we obtain that

— 65 g2
t+1 O _ g2 2reng® i 2
e (t+1)°=]s si; —sil" =l S PO — 855l
LeNg;©
ZLeN?.e_BtSL ldp —s7;?
ZLENC e ,Bts( )

ZLerje Prdeerce®)(sy )
- ZLEGC e*ﬂtzeeLGE(t)

Z 201 (c=1)elt) g =BesT, (5% )2, (64)

LeBg;

IGC |

ij
By the induction assumption €(t) < 1/2(c—1)/; and then using the definition of A, we have

eZLEnge—st’i (s1)? - el
|G (1=N)| Byl

e(t+1)%< D ey ) (65)

Combining the lemma assumptions and the definition of M/ we have

e T

M- NFE 2D,

Therefore the lemma is proved by taking the square root of both sides. O

e(t+1)°< )2 (66)

Proof of Lemma C.9. To prove this lemma, we first prove an upper bound on the suprema of weakly dependent empirical processes.
For an index set .4 and corresponding random variables { X, } ¢ 4, we make the following definitions:

* A subset A’ of A is independent if {X,, }ne.4s is independent.

* A family of pairs (Aj,wy) is a fractional cover of A if ), wy1 4, >14.

* A fractional cover (Ay,wy) is proper if each set Ay, is independent.

Lemma D.4. Assume {X,},c; are identically distributed according to P. Assume F is a countable set of functions that are
all P-measurable and for all f € F, | fllc <1. Let Z =supsex|) ,c;f(Xa)|- Assume I admits a proper fractional cover
{(Ij,w;)}jes and Zj =sup s r[> e f, f(Xa)|- Let {p; };e.s be positive numbers such that 3 - p; =1. Then

t

Z>ZwJIEZ +t) <exp(— vcp(WU

J

) 67)

where v=2min;EZ; +sup s zVar(f(Xa)) and W=} w;.



Proof. We follow the proof strategy of [23]. By lemma 3.2 in [23] we can assume (I;,w;) is an exact fractional cover of 1. We have

=sup| ) f(X. (63)
eI
< sup|ZZw] 17, () f(Xa) (69)
fer acl j
= sup|ij211 (70)
acl
—suplijZf (1
7 acl;
<ijsup|2f |:ijZj. (72)
aEI 7
Let p; be any positive numbers such that ) ;P; =1. By Jensen’s inequality, for any v >0,
exp(u(Z—Y EZ;)) <exp(> (7. ~BZ;)) < § piexp(——2 (Z;—EZ;)). (73)
J J

Since Z; is the supremum of a sum of independent random variables, by theorem 2.1 in [3] we have

Eexp(“2 (Z;~EZ;)) < exp(t(— 2 ;) (74)

p] J

where ¢(7) =e™" —1+x and v; = 2EZ; +sup ;. z Var(f(X,)). Let p; =w;/W. By definition of v, v =min;v;. By Markov’s
inequality we have

fZEZj >1) <e “ReUZX,E%) (75)
S }wjew(—uW)vj
<eW=l - __ 76
<e W (76)
Z _wje’(/)(—uW)U
<eW=l - __ 77
<e i (77)
:efuter(qu)’U (78)
— efutJr(e“Wflqu)v. (79)
Taking the minimum of the right hand side with respect to u gives P(Z >t) <e~v¢(t/Wv), O

Now let’s prove Lemma C.9. We slightly abuse the notation for simplicity. Throughout this proof we use B;; as the set of all
bad ij,c-paths. To use Lemma D.4, we need to construct a proper fractional cover of B;. Let A; = || Bf;|/cm.—1 . Note that by
the regular E-R condition, we know that each L € Bj; has at most cm.— cycles that are correlated with L By Hajnal- Szemerédi
theorem, there exists a partition of By}, namely { Bf; k}mf ', where for any k, | Bf; | = Aq or Ay +1, and all paths in Bf; ; are
independent. This induces a proper fractlonal cover (BZ ik 1). By Lemma D 4, for any £ >0 we have

(80)

t
P( sup Z fr(s1) >t+ceme._1maxEZ) <exp(—vp(
fTGJ:(ﬂ)LEij k CMe—1V

where v =2min,EZ,+V (B).
By lemma 7 of [25] we know that EZy, < C14/log|By; ,|/|Bf; i |- By |Bj ;| = A1 we know log|Bf; , |/|Bf; | <logAq/A.



By () > §In(1+x) and the definition of Ay, let t=|Bg;|(2C1+/logA1/A;+V(3)) in (80), we have

10gA1
P sup f=(s +(2C1+— )
freF(B )|B1]|L€ZBC A1 A1
(81)
In2 logA
<exp| ——-A1(2C; 8 +V(B)) |-
2 A
By the definition of m,_1 we know that cm,._; ~max(n°~3p°=2 n¢). Therefore A; =Q(min(np,n~2p°~1)). Since A; >1,
Lemma C.9 is proved by letting K" =2C4 +1. O

E. Extension to any linear group with the metric induced by the Frobenius norm

Our algorithm LongSync can be extended to any linear group with the metric induced by the Frobenius norm. Let
Dg(G1,G2)=||G1—G2||F be such metric defined on a linear group G. The update rule of LongSync becomes:

50— (Zw(“d (t))

LENg,
:( wD3(G1.Gyy) /2! )/2
LeNg,
1/2
= (( > w?nGL—Gij%)/zS’)
LENg,
1/2
= <(< Z ’w(Lt)C;’L7 Z wg)GL>—2< Z ’U)(Lt)GL,Gij>+ Z wg)<GU,GU>)/ Z w?) . (82)
Leij LEN% LGN% LEij LGN%

With the same f. and g, in 3.1, we have the following proposition:

Proposition E.1. The update rule of of LongSync for any linear group in equation (82) is equivalent to the following matrix operations:

—2<gc(W<t>,G),G>

block block

gl <(<gc(\/W7G)agc(\/W7G)>

©1/2
) ®fc(W(t))+<GaG>bzock> ®3)

where W+ = A@exp(—3,8M).

Proof. We prove the proposition by comparing the ¢j-th element of the right hand side of equation (83) with (82). By the definition
of blockwise inner product, the 75-th block of the right hand side of equation (83) is

1/2
<(<gc<W,me,gc(vw,G><m‘>>—2<< 0.G).Gyy)) /1AW <t>>+<Gij7Gij>> :

Note that by definition of g., g.(v/ W (£),G)(i,5) = > e ne w(Lt)GL, and g.(W(t),G)(i,5) = > pcne. w(Lt)GL. By the

iJ ]
definition of f., f.(W®)(i,j)=>" LeNe. wg). By directly comparing the terms we know that the right hand side of equation (83)
is the same as (82). O

In view of this vectorized update rule, we propose the vectorized LongSync iterations for any linear group with [y metric in
algorithm 2.

We remark that the theory of LongSync can also be adapted as long as the group is *well-conditioned’, i.e. there exists constants
Mg and mg only depending on G such that for any G €, the absolute value of the eigenvalues of G is between mg and M.



Algorithm 2 (LongSync for any linear group)

Input: pairwise measurement matrix G, adjacency matrix A € [0,1]”*", cycle length ¢, positive parameters {5, };>1, time step T’

WO(i )+ A
for t=0:Tdo
®1/2
®) — ®) ®
5O (((e(vVWO.00.(VWO.G)) =20 (WD.G).G) )0 S(W )+ Gy )

WD o AGexp(—p,S1)

end for
Output: edge weights W(T*1 | corruption levels S(7)




