
Supplementary Material
A. Full Results for the Real Data Experiment

We record the full results for our real data experiment in Tables 3 and 4.

Data LongSync MultiSync-New IRLS-New MPLS on full dataset Remaining
n k ē ê t ē ê t ē ê t ē ê t cameras

Alamo 627 10 2.67 1.03 6.68 3.21 1.81 80.77 2.74 1.14 3.58 2.03 0.95 53.67 0.70
Ellis Island 247 7 1.07 0.60 1.05 1.81 1.37 24.46 1.29 0.92 0.79 0.89 0.48 4.40 0.66
Madrid Metropolis 394 6 2.98 1.89 1.28 4.42 3.92 14.76 3.35 2.27 1.00 2.10 1.10 5.76 0.53
Montreal Notre Dame 474 8 3.89 0.45 2.96 4.34 1.05 39.17 4.00 0.60 1.86 0.78 0.41 14.95 0.70
Notre Dame 553 11 1.00 0.60 5.26 1.93 1.64 111.98 1.40 1.12 3.04 0.96 0.50 52.68 0.66
NYC Library 376 6 2.05 1.09 1.20 2.56 1.63 14.57 2.31 1.47 0.83 1.56 1.01 5.02 0.56
Piazza del Popolo 345 7 3.83 0.62 1.39 4.07 1.07 22.91 3.89 0.83 0.98 1.61 0.57 6.26 0.61
Roman Forum 1102 6 2.47 1.61 5.60 2.84 1.98 16.13 2.55 1.68 3.21 1.80 1.33 24.05 0.48
Tower of London 489 5 2.85 2.18 1.82 3.49 2.66 8.43 2.94 2.20 1.17 2.50 2.13 5.63 0.60
Union Square 930 4 8.02 4.31 2.59 7.79 3.93 4.92 7.76 3.73 1.73 4.50 3.53 7.20 0.42
Vienna Cathedral 918 9 3.65 0.58 5.66 4.34 1.57 56.45 3.76 0.77 3.36 1.30 0.53 54.62 0.48
Gendarmenmarkt 742 6 84.95 77.60 3.21 83.30 80.48 15.75 74.71 84.23 2.27 48.52 40.16 13.58 0.47
Piccadilly 2508 9 5.07 1.75 22.56 5.43 2.46 65.89 5.21 2.08 10.72 2.20 1.45 429.40 0.45
Trafalgar 5433 9 7.12 2.33 79.33 10.01 5.19 91.69 7.25 2.44 41.59 1.88 1.17 1796.41 0.38
Yorkminster 458 6 1.97 1.36 2.52 2.33 1.74 14.97 2.01 1.38 1.89 1.63 1.31 7.05 0.61

Table 3. Results for PhotoTourism. For each dataset, ē and ê indicate the mean error and median error of the output absolute rotation estimates
measured in degrees, and t is the total runtime of each method measured in seconds. The last column indicates the remaining portion of cameras
for each dataset after adpoting our new graph preprocessing method.

Data
LongSync-Naive MultiSync IRLS MPLS on full dataset

n k ē ê t ē ê t ē ê t ē ê t

Alamo 627 10 7.45 1.11 8.91 7.74 1.56 81.73 7.56 1.30 5.71 3.67 1.02 55.43
Ellis Island 247 7 3.84 0.69 2.28 5.24 2.29 25.49 4.12 1.09 1.77 2.82 0.50 5.72
Madrid Metropolis 394 6 9.85 2.92 2.96 10.27 3.91 15.46 10.13 3.61 2.24 5.83 1.31 7.63
Montreal Notre Dame 474 8 5.93 0.61 5.17 6.49 1.44 41.20 6.06 0.87 3.37 1.13 0.50 18.40
Notre Dame 553 11 4.57 0.72 8.56 4.97 1.28 117.81 4.82 1.09 5.19 2.71 0.64 57.94
NYC Library 376 6 6.15 1.65 2.77 7.13 2.96 15.58 6.28 1.92 2.07 3.11 1.30 5.92
Piazza del Popolo 345 7 6.37 0.99 2.84 10.18 7.09 33.35 7.23 1.18 2.07 3.44 0.86 7.19
Roman Forum 1102 6 5.98 1.80 10.15 6.61 2.57 19.17 6.06 1.93 5.81 2.87 1.41 27.33
Tower of London 489 5 6.46 2.95 3.99 7.03 3.43 9.77 6.74 3.24 2.77 3.96 2.44 6.53
Union Square 930 4 25.68 5.68 5.95 27.64 7.24 7.34 25.31 5.74 4.20 6.14 3.70 8.52
Vienna Cathedral 918 9 13.26 1.60 10.31 13.74 2.37 62.84 13.47 1.97 6.33 6.19 1.31 58.05
Gendarmenmarkt 742 6 74.25 72.34 6.40 74.63 71.53 17.56 76.58 81.32 4.33 39.70 10.48 17.13
Piccadilly 2508 9 9.58 2.82 42.17 9.91 3.19 72.09 10.66 3.78 19.39 4.45 2.08 455.83
Trafalgar 5433 9 9.61 3.27 130.55 10.23 4.16 112.62 9.75 3.44 60.49 5.49 4.39 1929.21
Yorkminster 458 6 8.25 1.69 5.06 8.80 2.47 16.59 8.28 1.74 3.87 3.55 1.58 8.31

Table 4. Results for PhotoTourism where all methods are performed without our graph preprocessing method. For each dataset, ē and ê indicate
the mean error and median error of the output absolute rotation estimates measured in degrees, and t is the total runtime of each method measured
in seconds. The last column indicates the remaining portion of cameras for each dataset after the camera pruning step of our improved pipeline.



B. Proof for the Formulas of gc and fc and their Computation Complexity
In this section we prove the formulas and time complexity for fc and gc defined in section 3.

For c=3, since all 3-cycles are simple, fc(W )(i,j)=
∑
L∈Cc

ij

∏
e∈L\{ij}=

∑
k∈[n]wikwkj is exactly the ij-th entry of W 2,

and gc(W ,R)(i,j)=
∑
L∈Cc

ij
=
∑
k∈[n]wikRikwkjRkj is exactly the ij-th block of P 2.

For c≥4, there are redundant cycles inCcij, i.e. cycles that are not simple. We follow the argument in [35] to compute fc(W )(i,j)
and gc(W ,R)(i,j). For example, the cycle ikij is redundant since the node i repeats twice. We say this cycle satisfy the partition
0+2+1 of c−1, in that the number of steps from the first node to the repeated node is 0, the number of steps from the repeated
node to its second appearance is 2, and the number of remaining steps to the last letter is 1. Some cycles may satisfy more than 1
partition. For integer 1≤a≤c−1, letCcij,a be the set of redundant c-cycles satisfying a partitions. Let qc be the number of admissible
partitions of length c, i.e. partitions that correspond to a redundant cycle. Then the function fc and gc can be written as follows:

fc(W )(i,j)=W c−1+

qc∑
a=1

(−1)a
∑

L∈Cc
ij,a

∏
e∈L\{ij}

we (15)

gc(W ,R)(i,j)=P c−1+

qc∑
a=1

(−1)a
∑

L∈Cc
ij,a

∏
e∈L\{ij}

weRe. (16)

For c=4, the set of admissible partitions is {0+2+1,1+2+0}, therefore q4 =2. By enumerating the possible cycles for any
combination of such admissible partitions, we know that the set C4

ij,1={k∈ [n] :ikij}∪{k∈ [n] :ijkj}, and the set C4
ij,2={ijij}.

Therefore we can simplify the above formulation as:

fc(W )(i,j)=W c−1−
∑
k∈[n]

wikwkiwij−
∑
k∈[n]

wijwjkwkj+wijwjiwij (17)

gc(W ,R)(i,j)=P c−1−
∑
k∈[n]

wikwkiwijRikRkiRij−
∑
k∈[n]

wijwjkwkjRijRjkRkj+wijwjiwijRijRjiRij. (18)

This can be vectorized as

fc(W )=W 3−d(W 2)W−Wd(W 2)+W⊙3 (19)

gc(W ,R)=P 3−d(P 2)P−Pd(P 2)+P⊙3. (20)

Using similar arguments as above (one may refer to [35]), we have the formulas for c=5 and c=6. The formulas for c=5
are presented in Table 1. The formulas for c=6 are as follows:

fc(W )=Wd(W 4)+d(W 4)W+W 2d(W 3)+d(W 3)W 2+Wd(W 2)W 2+W 2d(W 2)W+Wd(W 3)W

+W 2⊙W⊙3+3W⊙(W⊙2)2+2Wd(W 2)⊙W⊙2+2d(W 2)W⊙W⊙2

+4d(W 2)W⊙3+4W⊙3d(W 2)−Wd(Wd(W 2)W )−d(Wd(W 2)W )W

−2W (W⊙2⊙W 2)−2(W⊙2⊙W 2)W−W⊙2W 2−W 2W⊙2

−2Wd(W 2)2−2d(W 2)2W−W (W⊙W 2)−(W⊙W 2)W−W⊙W 3−2W⊙2W 3−d(W )2Wd(W 2)

−W⊙W 2⊙W 2−WW⊙3W−2W⊙W 2⊙W 2−4W⊙5

gc(W ,R)=Pd(P 4)+d(P 4)P+P 2d(P 3)+d(P 3)P 2+Pd(P 2)P 2+P 2d(P 2)P+Pd(P 3)P

+P 2⊙P⊙3+3P⊙(P⊙2)2+2Pd(P 2)⊙P⊙2+2d(P 2)P⊙P⊙2

+4d(P 2)P⊙3+4P⊙3d(P 2)−Pd(Pd(P 2)P )−d(Pd(P 2)P )P

−2P (P⊙2⊙P 2)−2(P⊙2⊙P 2)P−P⊙2P 2−P 2P⊙2

−2Pd(P 2)2−2d(P 2)2P−P (P⊙P 2)−(P⊙P 2)P−P⊙P 3−2P⊙2P 3−d(P )2Pd(P 2)

−P⊙P 2⊙P 2−PP⊙3P−2P⊙P 2⊙P 2−4P⊙5



The computational time complexity of the previous cases for fc and gc areO(r(n)) andO(r(dn)), respectively, since computing
fc by the formula above only requires standard matrix operations between n×nmatrices, and computing gc by the formula above
only requires standard matrix operations between dn×dnmatrices. For the case c≥7, [47] gives an estimation on the upper bound
of the computational time complexity asO(n[(c+3)/2]).

C. Main Theory
We formulate theory for adversarial corruption in Section C.1 and for the uniform corruption model in Section C.2. The latter theory
extends the one stated in Section 4.

Both settings use the following common notation. LetEg be the set of good (clean) edges,Eb be the set of bad (corrupted) edges,
andNc

ij be the set of simple c-cycles containing ij. LetGcij be the set of good simple c-cycles with respect to ij. That is, for any
cycle L∈Gcij, L is simple of length c and L\{ij} are all clean.

C.1. Theory for Adversarial Corruption

In this section we focus on the adversarial corruption model [25]. The adversarial corruption model makes no assumption on the
graph topology or the corrution pattern. The only assumption is that for each ij∈Eg, gij=g∗ij, and for each ij∈Eb, gij ≠g∗ij. Since
LongSync is a modified and vectorized version of CEMP for higher-order cycles, it inherits the robustness of CEMP to adversarial
corruption. Define λ=maxij∈E |Bcij|/|Nc

ij| where Bcij=N
c
ij\Gcij is the set of bad cycles with respect to ij (namely at least one

of the other (c−1) edges in the cycle are corrupted). In the scenario of adversarial corruption with an assumption on λ, we can
guarantee linear convergence of LongSync as follows.

Theorem C.1. Assume data is generated by the adversarial corruption model with λ< 1
1+(c−1)2 . Assume the parameters {βt}tmax

t=1

of LongSync with c-cycles satisfy β0≤1/(c−1), βt+1=rβt and 1<r< 1
c−1

√
1−λ
λ . Then the corruption levels {s(t)ij }ij∈E estimated

by LongSync satisfy the following equation:

max
ij∈E
|s(t)ij −s

∗
ij|≤

1

(c−1)β0rt
for all t≥0. (21)

Proof. Let ϵij(t)= |s(t)ij −s∗ij| and ϵ(t)=maxij∈Eϵij(t). By the fact that |dL−s∗ij|≤ s∗L, Gcij ⊆Nc
ij and s∗L=0 for L∈Gcij, we

obtain that

(ϵij(t+1))2= |s(t)ij −s
∗
ij|2= |

√√√√√∑L∈Nc
ij
e−βts

(t)
L d2L∑

L∈Nc
ij
e−βts

(t)
L

−s∗ij|2

≤

∑
L∈Nc

ij
e−βts

(t)
L |dL−s∗ij|2∑

L∈Nc
ij
e−βts

(t)
L

≤

∑
L∈Nc

ij
e−βts

(t)
L (s∗L)

2∑
L∈Nc

ij
e−βts

(t)
L

≤

∑
L∈Bc

ij
e−βts

(t)
L (s∗L)

2∑
L∈Gc

ij
e−βts

(t)
L

≤

∑
L∈Bc

ij
e−βt

∑
e∈Lϵe(t)(s∗L)

2∑
L∈Gc

ij
e−βt

∑
e∈Lϵe(t)

≤ 1

|Gcij|
e2βt(c−1)ϵ(t)

∑
L∈Bc

ij

e−βts
∗
L(s∗L)

2. (22)

We prove the theorem by induction. Note that the case t=0 is equivalent to ϵ(0)≤1/(c−1)β0, and this immediately follows from the
fact that 0≤ϵij(0)≤1 and the assumption β0<1/(c−1). We next prove ϵ(t+1)<1/(c−1)βt+1 from ϵ(t)<1/(c−1)βt. By the in-



equality above, the induction assumption, the fact that x2ex<4/(ax)2 with x=s∗L and a=βt and the definition ofλ and rwe have

(ϵij(t+1))2≤ 1

|Gcij|
·e2·

4|Bcij|
e2β2t

=
4|Bcij|
|Gcij|β2t

≤ 4λ

(1−λ)β2t
=

1

β2t r
2(c−1)2

=
1

β2t+1(c−1)2
. (23)

The theorem follows by taking the maximum of the left hand side and then the square root of both sides of the above equation.

C.2. Theory for Uniform Corruption Model

Throughout the rest of the paper we use P(A) to denote the probability of event A. Let p0=P(gij=g∗ij) for each edge ij∈Eb.
By the choice of corruption model, p0 only depends on the group G. Let q∗=1−q+qp0=P(ij∈Eg|ij∈E). Let qg=1−q. We
remark that for rotation synchronization (in fact any Lie group synchronization), qg=q∗ and p0=0.

Recall for each e ∈ E, s∗e is the ground truth corruption level of edge e. For L = (ik1,k1k2,··· ,kc−2j) ∈ Nc
ij, we denote

s∗L=
∑
e∈L\{ij}s

∗
e. To state our main theorem, we let F(β)={fτ(x):=e−τx+2τ2x2/4:τ >β} and V (β)=supτ>βVar(fτ(s∗L)).

Due to the model assumptions, the distribution of fτ(s∗L) is independent of the choice of L∈Nc
ij.

Using the above notation, we formulate the following theorem, which generalizes Theorem 4.1

Theorem C.2. Let 0<r<1, 0<q<1, 0<p≤1. Assume we use LongSync with cycles of length c and n/logn=Ω((pqg)
− c−1

c−2−ϵ )
for some ϵ>0. Assume

0<
1

β0
<

qc−1
g qc−1

∗

16(1−qc−1
∗ )(c−1)2β1

, (24)

V (β1)<
r

16(c−1)
· qc−1

∗

1−qc−1
∗

, (25)

1/βt+1=r/βt for all t≥1, (26)

min(np,nc−2−ϵpc−1)≳
(1−qc−1

∗ )2

q
2(c−1)
∗ r2

. (27)

Then with probability at least 1 − 4cn2 exp
(
−Kη20(pq∗)

c−1
c−2n

)
− 2e2c · exp

(
−nϵ/(c−1)+clogn

)
−

n2exp
(
− ln2

2 min(np,nc−2−ϵpc−1)V (β1)
)
−2n2 ·exp

(
−ηeG8c ln(1+

eG
2(c−1)β0vG

)min(np,nc−2−ϵpc−1)
)

, where η0,η,K,eG,vG are

absolute constants, we have maxij∈E|s∗ij−s
(t)
ij |≤ 1

2cβt
for all t≥1.

Remark C.3. As is shown in [25], for G∈SO(3), V (β)∼O(β−3). Therefore n/logn∼p−(c−1)/(c−2−ϵ)q
−7(c−1)/3(c−2−ϵ)
g is the

minimal sample complexity dependence for G=SO(3) such that with high probability, the conclusion of Theorem 4.1 holds true.

C.3. Proof of Theorem C.2

We adopt the proof framework of [25]. The major difficulty of the proof is the dependence in the cycle inconsistency measures of
cycles inNc

ij when c≥4. For example, the cycle inconsistency measure of a 4-cycleL1=(ik1,k1k2,k2j) is not independent with that
of L2=(ik1,k1k3,k3j), while for a pair of 3-cycles their ratios are always independent. This means that the required concentration
inequalities cannot be obtained by directly applying the standard Chernoff bounds. Nonetheless, we have integrated various
mathematical techniques from [3, 7, 22–24, 48] to derive Theorem 4.1, which offers improvements over theorem 7 presented in [25].

For convenience for any c≥3, we define a c-path as a path that involves c vertices, and we define an ij,c-path as a c-path that
starts from i and ends at j. We extend the definition ofNc

ij as the set of ij,c-paths in graphG.
We first prove that with high probability, the number of c1-cycles concentrates around its mean for any c1≤c. More specifically, let

nc1 =(n−2)(n−3)(n−4)···(n−c1+1) be the number of possible ij,c1-path candidates, andmc1 =max(pc1−1nc1,n
ϵ). Therefore

the expected number of ij,c1-paths is pc1−1nc1 . For any ϵ,η>0 we define the (ϵ,η0)-regular Erdős-Rényi graph condition as follows:

Definition C.4. Let δ=sup{δ>0 s.t. np1+δ/logn→∞} and c0=⌈2+δ−1⌉. A graphG satisfies the (ϵ,η0)-regular Erdős-Rényi
graph condition if and only if the following conditions hold true:
• For any i≠j∈ [n] and c1≥c0,

(1−η0)mc1< |N
c1
ij |<(1+η0)mc1 (28)

and
(1−η0)qc1−1

∗ mc1< |G
c1
ij |<(1+η0)q

c1−1
∗ mc1; (29)



• For any i≠j∈ [n] and c1<c0,
0≤|Nc1

ij |<mc1. (30)

.

We have the following theorem on the phase transition of the number of c-paths:

Theorem C.5. AssumeG is generated with the uniform corruption model UCM(n,p,q), and ϵ,η>0 are constants. Then the (ϵ,η0)-
regular E-R graph condition holds with probability at least 1−cn2exp(−η

2
0

5cpn)−cn
2exp(−Kη20p

c−1
c−2n)−cn2exp(−η

2
0

5cpq∗n)−
cn2exp

(
−Kη20(pq∗)

c−1
c−2n

)
−2e2cn2exp

(
−nϵ/(c−1)+(c−2)logn

)
, which is almost 1 by the condition n/logn=Ω((pqg)

− c−1
c−2−ϵ ).

The proof of Theorem C.5 is put in section D. Based on this theorem, we have a concentrated ’initialization’ of corruption level
estimates after the first iteration:

Theorem C.6. (Initialization) Assume the (ϵ,η0)-regular E-R graph condition holds. Recall that the corruption level estimation
of LongSync with cycle length c at t=0 is

s
(0)
ij =

√√√√∑L∈Nc
ij
d2L

|Nc
ij|

. (31)

Denote eG=Ed2L and vG=Var(d2L). Then for any η>0 and ij∈E,

P(|(s(0)ij )
2−E(s(0)ij )

2|>ηE(s(0)ij )
2)<2exp

(
−ηeG

8c
ln(1+

ηeG
2vG

)min(np,nc−2−ϵpc−1)

)
. (32)

Let λ=maxij∈E |Bcij|/|Nc
ij| where Bcij=N

c
ij\Gcij is the set of bad ij,c-paths. To prove the linear convergence, we need the

following three lemmas:

Lemma C.7. If maxij∈E|(s(0)ij )2−E(s
(0)
ij )

2|≤ 1
2(c−1)β0

, then

max
ij∈E
|s(1)ij −s

∗
ij|≤

λ

1−λ
2(c−1)
qc−1
g β0

. (33)

Lemma C.8. Assume that maxij∈E|s(1)ij −s∗ij|<1/(2(c−1)β1), βt=rβt+1 for t≥1, and

max
ij∈E

1

|Bcij|
∑

L∈Bij,c

e−βts
∗
L(s∗L)

2<
1

Mβ2t
for all t≥1, (34)

whereM=4(c−1)2eλ/((1−λ)r2). Then the LongSync corruption level estimates satisfy

max
ij∈E
|s(t)ij −s

∗
ij|<

1

β1
rt−1 for all t≥1. (35)

Lemma C.9. If either s∗ij for ij ∈Eb is supported on [a,∞) and a≥ 1/|Bcij| or Q is differentiable and Q′(x)/Q(x)≲ 1/x for
x<P(1), then there exists an absolute constantK′′ such that

P

 sup
fτ∈F(β)

1

|Bcij|
∑
L∈Bc

ij

fτ(s
∗
L)>V (β)

+K′′

√
logmin(np,nc−2−ϵpc−1)

min(np,nc−2−ϵpc−1)

)

<exp

(
− ln2

2
min(np,nc−2−ϵpc−1)V (β)

)
. (36)

where F(β)={fτ(x)=e−τx+2τ2x2/4:τ >β}.



Lemma C.7 and C.8 are direct extensions of lemma 4 and lemma 5 of [25]. Lemma C.9, however, involves the extension of
theorem 2.3 in [3] to the supremum of locally independent empirical processes and Hajnal-Szemerédi theorem for equitable coloring.
We refer the reader to section D for the proof of these lemmas.

Proof of the main theorem. By the regular E-R graph condition, we can choose appropriate η0 so that

1

4

qc−1
∗

1−qc−1
∗

<
1−λ
λ

<4
qc−1
∗

1−qc−1
∗

. (37)

To guarantee the condition (34) of Lemma C.8, we need to choose β1 such that V (β1) < e/2M and n large
enough such that log(min(np, nc−2−ϵpc−1))/ min(np, nc−2−ϵpc−1) < e2/4K′′2M2. By the assumption that
V (β1)<(rqc−1

∗ )/16(c−1)(1−qc−1
∗ ),M=4(c−1)2eλ/((1−λ)r2) and (37) we know that V (β1)<e/2M . By the assumption that

min(np,nc−2−ϵpc−1)≳ (1−qc−1
∗ )2/q

2(c−1)
∗ r2 we know that log(min(np,nc−2−ϵpc−1))/min(np,nc−2−ϵpc−1)< e2/4K′′2M2.

Therefore the condition (34) of Lemma C.8 holds true.
On the other hand, by Theorem C.6 with η=1/2(c−1)β0 we know that w.h.p. the condition of Lemma C.7 holds true. By the

assumption that 1/β0<qc−1
∗ qc−1

g /16(1−qc−1
∗ )(c−1)2β1, we know that the conclusion of Lemma C.7 implies the first assumption

of Lemma C.8.
Therefore, the proof of the theorem follows from the conclusion of Lemma C.8.

D. Proofs of Auxiliary Results

We provide additional results for auxiliary theorems and lemmata used in the previous section.

Proof of Theorem C.5. We have the following basic lemmas:

Lemma D.1. (Concentration of number of paths of length≥c0−1with fixed endpoints) Let 0≤q<1, 0<p≤1,n∈Nwithnp≥Θ(1).
Assume data is generated by UCM(n,p,q), and c≥c0. For any η0>0, there exists a constantK>0 that only depends on c, such that

P(|Nc
ij|−pc−1nc<η0p

c−1nc)<exp(−η
2
0

5c
pn) (38)

P(|Nc
ij|−pc−1nc>η0p

c−1nc)<exp(−Kη20p
c−1
c−2n) (39)

for any fixed i≠j∈V , and

P(|Nc
ij|−pc−1nc<η0p

c−1nc)< |E|exp(−
η20
5c
pn) (40)

P(|Nc
ij|−pc−1nc>η0p

c−1nc)< |E|exp(−Kη20p
c−1
c−2n). (41)

Proof. Let Mc
ij = {(i,k1,k2, ··· ,kc−2,j) : i,k1,k2, ··· ,kc−2,j ∈ [n] are different}. Note that |Nc

ij| =
∑
α∈Mc

ij
Iα, where Iα =

1ik1∈E1k1k2∈E···1kc−3kc−2∈E1kc−2j∈E for α=(i,k1,k2,···,kc−2,j). For any α,β∈Mc
ij, define ω=

∑
α∈Mc

ij
EIα=

∑
α∈Mc

ij
pc−1=

pc−1nc. Let us write α∼β if α, β∈Mc
ij with at least one common edge, and define δ=(

∑
α∼βEIαIβ)/ω. (This sum should be

interpreted as the sum over all pairs (α,β), so each pair is counted twice.) By theorem 1 of [22], we have the following inequality:

P(|Nc
ij|<(1−η0)pc−1nc)≤exp(−

η20ω

2(1+δ)
). (42)

Denote |α\β| as the number of nodes that belong to β but do not belong to α. By the definition of δ, we have the following estimate:



δ=(
∑
α∼β

EIαIβ)/ω

=
1

ω

∑
α∈Mc

ij

c−3∑
k=1

∑
α∼β and |α\β|=k

EIαIβ

=
|Mc

ij|
ω

c−3∑
k=1

∑
α∼β and |α\β|=k

pk+c−1

≤ (n−2)(n−3)···(n−c+1)

pc−1(n−2)(n−3)···(n−c+1)

c−3∑
k=1

(n−2)(n−3)···(n−k−1)pk+c

≤ 1

pc−1
c(n−2)(n−3)···(n−c+2)p2c−3

≤c(n−2)(n−3)···(n−c+2)pc−2=
cω

(n−c+1)p
. (43)

Plugging (43) to (42) gives:

P(|Nc
ij|<(1−η0)pc−1nc)≤exp(−

η20ω

2(1+δ)
)

<exp(−η
2
0ω

4δ
)

≤exp(−η
2
0ω(n−c+1)p

4cω
)

<exp(−η
2
0np

5c
). (44)

Therefore inequality (38) is proved, and inequality (40) follows from a union bound argument.
For the upper tail, let A be an arbitrary subset of {k1,k2,···,kc−2}, the set of free vertices of an ij,c-path. Denote MA as the

expected number of ij,c-paths (ik1,k1k2,···,kc−2j), where the vertices in A are fixed, and let Mk=max|A|≥kMA. We have the
following calculation:

Mk=

{
nc−2−kpc−1−k, k≤c−3
1, k=c−2

. (45)

Let λ=η20(n−c+1)p
c−1
c−2 . By c≥c0, we know that λ=ω(logn). Also, by setting M0=M0 and Mk=M0λ

−k we know that for
all 0≤k≤c−2,Mk≥Mk. Therefore we can apply theorem 1.2 in [48] and get the following inequality

P(|Nc
ij|−pc−1nc>η0nc)≤exp(−K0η

2
0(n−c+1)p

c−1
c−2 ) (46)

whereK0 is a constant that only depends on c. LetK=K0/2. By the order of c we know that

P(|Nc
ij|−pc−1nc>η0nc)≤exp(−Kη20np

c−1
c−2 ). (47)

Therefore inequality (39) is proved, and inequality (41) follows from a union bound argument.

Lemma D.2. Let 0≤q<1, 0<p≤1, n∈N with np≥Θ(1). Assume data is generated by UCM(n,p,q), c≥c0, andK is the constant
in Lemma D.1. For any η0>0, we have

P(|Gcij|−pc−1qc−1
∗ nc<η0p

c−1qc−1
∗ nc)<exp(−η

2
0

5c
pq∗n) (48)

P(|Gcij|−pc−1qc−1
∗ nc>η0p

c−1qc−1
∗ nc)<exp(−Kη20pq∗n) (49)



for any fixed i≠j∈V , and

P(|Gcij|−pc−1qc−1
∗ nc<η0p

c−1qc−1
∗ nc)< |E|exp(−

η20
5c
pq∗n) (50)

P(|Gcij|−pc−1qc−1
∗ nc>η0p

c−1qc−1
∗ nc)< |E|exp(−Kη20pq∗n). (51)

Lemma D.2 is proved by replacing p with pq∗ in the proof of Lemma D.1.
To count the shorter paths which has a vanishing expectation when n tends to infinity, we need the following concentration

inequality:

Lemma D.3. (Concentration of number of paths with length ≤ c0−2) Let 0≤ q<1, 0<p≤1, n∈N with np≥Θ(1). Assume
data is generated by UCM(n,p,q), and c<c0. For any ϵ>0, there exists a constantK′>0 that only depends on c, such that

P(|Nc
ij|>K′nϵ)<2e2exp(−nϵ/(c−1)+(c−2)logn) (52)

for any fixed i≠j∈V , and
P(|Nc

ij|>K′nϵ)<2e2|E|exp(−nϵ/(c−1)+(c−2)logn). (53)

Proof. Define the multivariable polynomial f({xpq}p̸=q∈[n]) =
∑
α∈Mc

ij
xα, where xα = xik1xk1k2 ··· xkc−2j for

α=(i,k1,k2,···,kc−2,j) inMc
ij={(i,k1,k2,···,kc−2,j):i,k1,k2,···,kc−2,j∈ [n] are different}. Note that |Nc

ij|=f({1pq∈E}p̸=q∈[n]).
Let A⊆{xpq∈E :p≠q∈ [n]} be a subset of the variables of f , and fA({xpq}p̸=q∈[n]) be the partial derivative of f({xpq}p̸=q∈[n])
with respect to all variables in A. Let ∂A|Nc

ij|=fA({1pq∈E}p̸=q∈[n]). Define Ek=max|A|≥kE(∂A|Nc
ij|). By the main theorem

in [24], we know that
P(|Nc

ij−E0|>K′n(c−1)ϵ
√
E0E1)<2e2exp(−nϵ+(c−2)logn). (54)

Because c < c0, we know that for any k ∈ N, max|A|≤c−2E(∂A|Nij|) = o(1) and max|A|=c−1E(∂A|Nij|) = 1. Therefore,
E0=E1=1. Plugging these values into inequality (54) and substituting ϵ with ϵ/(c−1) results in inequality (52). Inequality (53)
is obtained from a union probability bound argument.

With the estimates above, the regular E-R graph condition holds with probability at least 1 − n2 exp(−η
2
0

5cpn) −
n2exp(−Kη20p

c−1
c−2n)−n2exp(−η

2
0

5cpq∗n)−n
2exp(−Kη20(pq∗)

c−1
c−2n)−2e2n2exp(−nϵ+(c−2)logn).

Proof of Theorem C.6. For any L∈Nc
ij and pq∈L, we say L′ is correlated with L if L∩L′ is nonempty, and L′ is correlated with

L\{pq} if (L\{pq})∩L′ is nonempty. We denote CL as the set of ij,c-paths inNc
ij that is correlated with L, and denote CL\{pq} as

the set of ij,c-paths inNc
ij that is correlated with L\{pq}. With the regular E-R graph condition, we know that for any L∈Nc

ij,

|CL|≤
∑
pq∈L
|CL\{pq}| (55)

≤mc−1+m1mc−2+m2mc−3+···+mc−2m1+mc−1 (56)
<cmc−1. (57)

Denote ∆1=maxL∈Nc
ij
|CL|. Then we know that ∆1<cmc−1<cmax(nϵ,nc−3pc−2). We apply theorem 2.5 in [23] on

∑
L∈Nc

ij
d2L

and
∑
L∈Nc

ij
(−d2L) and get the following inequalities:

P(
∑
L∈Nc

ij

d2L>(1+η)E
∑
L∈Nc

ij

d2L)<exp(−
|Nc
ij|vG
∆1

φ(
ηE
∑
L∈Nc

ij
d2L

|Nc
ij|vG(1+∆1/8|Nc

ij|)
)) (58)

and

P(
∑
L∈Nc

ij

d2L<(1−η)E
∑
L∈Nc

ij

d2L)<exp(−
|Nc
ij|vG
∆1

φ(
ηE
∑
L∈Nc

ij
d2L

|Nc
ij|vG(1+∆1/8|Nc

ij|)
)) (59)

where φ(x)= (1+x)ln(1+x)−x. Note that φ(x)≥xln(1+x)/2 for any x≥ 0. By the regular E-R graph condition we have
|Nc
ij|≥(1−η0)nc−2pc−1, and therefore ∆1/|Nc

ij|≤max(1/(nc−2pc−1),1/(np))/(1−η0)<1. Also, since all the d2L’s for L∈Nc
ij



follow the same distribution with mean eG and variance vG, we know that E
∑
L∈Nc

ij
d2L= |Nc

ij|eG. Therefore RHS of (58) and
(59) can be upper bounded as follows:

RHS of (58) and (59)≤exp

(
−
|Nc
ij|vG
∆1

·
ηE
∑
L∈Nc

ij
d2L

2|Nc
ij|vG(1+∆1/8|Nc

ij|)

·ln(1+
ηE
∑
L∈Nc

ij
d2L

|Nc
ij|vG(1+∆1/8|Nc

ij|)
)

)

=exp

(
− 1

∆1
·

η|Nc
ij|eG

2(1+∆1/8|Nc
ij|)

ln(1+
ηeG

vG(1+∆1/8|Nc
ij|)

)

)

≤exp
(
−
ηeG|Nc

ij|
4∆1

ln(1+
ηeG
2vG

)

)
≤exp

(
−ηeG(1−η0)n

c−2pc−1

4max(nϵ,nc−3pc−2)
ln(1+

ηeG
2vG

)

)
≤exp

(
−ηeG

8c
ln(1+

ηeG
2vG

)min(np,nc−2−ϵpc−1)

)
. (60)

Combining the upper and lower tail bound together yields

P(|
∑
L∈Nc

ij

d2L−E
∑
L∈Nc

ij

d2L|>ηE
∑
L∈Nc

ij

d2L)<2exp(−ηeG
8c

ln(1+
ηeG
2vG

)min(np,nc−2−ϵpc−1)). (61)

Then Theorem C.6 follows by (31).

Proof of Lemma C.7. Denote γij=(s
(0)
ij )

2−E(s(0)ij )2 for ij∈E and γ=maxij∈E|γij|, so that the condition of the lemma can be

written more simply as 1/2(c−1)β0≥γ. By rewriting E(s(0)ij )2 as qc−1
g (s∗ij)

2+(1−qc−1
g )zG+γij and invoking lemma 1 in [25]

and equations (6) (7), we have the following bound:

|s(1)ij −s
∗
ij|2≤

∑
L∈Nc

ij
e
−β0

√∑
e∈Lq

c−1
g (s∗e)

2+(1−qc−1
g )zG+γe|dL−s∗ij|2∑

L∈Nc
ij
e−β0

∑
e∈L

√
qc−1
g (s∗e)

2+(1−qc−1
g )zG+γe

≤

∑
L∈Bc

ij
e−β0

∑
e∈L

√
qc−1
g (s∗e)

2+(1−qc−1
g )zG+γe(s∗L)

2∑
L∈Gc

ij
e−β0

∑
e∈L

√
qc−1
g (s∗e)

2+(1−qc−1
g )zG+γe

(62)

By first applying the facts: |γe| ≤ γ and s∗e = 0 for e ∈ L where L ∈ Gcij, and at last the inequality xe−ax ≤ 1/(ea) with
x=
∑
e∈L(s

∗
e)

2 and a=β0qc−1
g /2, we obtain that

|s(1)ij −s
∗
ij|2≤

∑
L∈Bc

ij
e−β0

∑
e∈L

√
qc−1
g (s∗e)

2+(1−qc−1
g )zG−γ(s∗L)

2

|Gcij|e−β0(c−1)
√

(1−qc−1
g )zG+γ

=

∑
L∈Bc

ij
e−β0

∑
e∈L(
√
qc−1
g (s∗e)

2+(1−qc−1
g )zG−γ−

√
(1−qc−1

g )zG+γ)(s∗L)
2

|Gcij|

≤

∑
L∈Bc

ij
e−β0

∑
e∈L(qc−1

g (s∗e)
2−2γ)/2(s∗L)

2

|Gcij|

≤
e2β0(c−1)γ

∑
L∈Bc

ij
e−β0q

c−1
g

∑
e∈L(s∗e)

2/2(c−1)
∑
e∈L(s

∗
e)

2

|Gcij|

≤
2(c−1)|Bcij|
|Gcij|β0q

c−1
g

. (63)



The lemma is concluded by applying the union bound on ij∈E and taking the square root on both sides of the above inequality.

Proof of Lemma C.8. Let ϵij(t)= |s(t)ij −s∗ij| and ϵ(t)=maxij∈Eϵij(t). We prove this lemma, or equivalently ϵ(t)<1/2(c−1)βt
for all t≥1, by induction. We first note that ϵ(1)<1/4βt is an assumption of the lemma. Next we show that ϵ(t+1)<1/2(c−1)βt+1

if ϵ(t)<1/2(c−1)βt.
By the fact that |dL−s∗ij|≤s∗L,Gcij⊆Nc

ij and s∗L=0 for L∈Gcij, we obtain that

ϵij(t+1)2= |s(t)ij −s
∗
ij|2= |

√√√√√∑L∈Nc
ij
e−βts

(t)
L d2L∑

L∈Nc
ij
e−βts

(t)
L

−s∗ij|2

≤

∑
L∈Nc

ij
e−βts

(t)
L |dL−s∗ij|2∑

L∈Nc
ij
e−βts

(t)
L

≤

∑
L∈Nc

ij
e−βts

(t)
L (s∗L)

2∑
L∈Nc

ij
e−βts

(t)
L

≤

∑
L∈Bc

ij
e−βts

(t)
L (s∗L)

2∑
L∈Gc

ij
e−βts

(t)
L

≤

∑
L∈Bc

ij
e−βt

∑
e∈Lϵe(t)(s∗L)

2∑
L∈Gc

ij
e−βt

∑
e∈Lϵe(t)

≤ 1

|Gcij|
∑
L∈Bc

ij

e2βt(c−1)ϵ(t)e−βts
∗
L(s∗L)

2. (64)

By the induction assumption ϵ(t)<1/2(c−1)βt and then using the definition of λ, we have

ϵ(t+1)2≤
e
∑
L∈Bc

ij
e−βts

∗
L(s∗L)

2

|Gij|
≤ eλ

(1−λ)|Bij|
∑
L∈Bc

ij

e−βts
∗
L(s∗L)

2. (65)

Combining the lemma assumptions and the definition ofM we have

ϵ(t+1)2≤ eλ

M(1−λ)β2t
=(

r

2(c−1)βt
)2. (66)

Therefore the lemma is proved by taking the square root of both sides.

Proof of Lemma C.9. To prove this lemma, we first prove an upper bound on the suprema of weakly dependent empirical processes.
For an index setA and corresponding random variables {Xα}α∈A, we make the following definitions:
• A subsetA′ ofA is independent if {Xα}α∈A′ is independent.
• A family of pairs (Ak,wk) is a fractional cover ofA if

∑
kwk1Ak

≥1A.
• A fractional cover (Ak,wk) is proper if each setAk is independent.

Lemma D.4. Assume {Xα}α∈I are identically distributed according to P . Assume F is a countable set of functions that are
all P -measurable and for all f ∈ F, ∥f∥∞ ≤ 1. Let Z = supf∈F |

∑
α∈I f(Xα)|. Assume I admits a proper fractional cover

{(Ij,wj)}j∈J , and Zj=supf∈F |
∑
α∈Ijf(Xα)|. Let {pj}j∈J be positive numbers such that

∑
jpj=1. Then

P(Z>
∑
j

wjEZj+t)<exp(−vφ( t

Wv
)) (67)

where v=2minjEZj+supf∈FVar(f(Xα)) andW=
∑
jwj.



Proof. We follow the proof strategy of [23]. By lemma 3.2 in [23] we can assume (Ij,wj) is an exact fractional cover of I. We have

Z=sup
f∈F
|
∑
α∈I

f(Xα)| (68)

≤ sup
f∈F
|
∑
α∈I

∑
j

wj1Ij(α)f(Xα)| (69)

=sup
f∈F
|
∑
j

wj
∑
α∈I

1Ij(α)f(Xα)| (70)

=sup
f∈F
|
∑
j

wj
∑
α∈Ij

f(Xα)| (71)

≤
∑
j

wj sup
f∈F
|
∑
α∈Ij

f(Xα)|=
∑
j

wjZj. (72)

Let pj be any positive numbers such that
∑
jpj=1. By Jensen’s inequality, for any u>0,

exp(u(Z−
∑
j

EZj))≤exp(
∑
j

pj
uwj
pj

(Zj−EZj))≤
∑
j

pjexp(
uwj
pj

(Zj−EZj)). (73)

Since Zj is the supremum of a sum of independent random variables, by theorem 2.1 in [3] we have

Eexp(
uwj
pj

(Zj−EZj))≤exp(ψ(−
uwj
pj

)vj) (74)

where ψ(x)=e−x−1+x and vj=2EZj+supf∈FVar(f(Xα)). Let pj=wj/W . By definition of v, v=minjvj. By Markov’s
inequality we have

P(Z−
∑
j

EZj≥t)≤e−utEeu(Z−
∑

jEZj) (75)

≤e−ut
∑
jwje

ψ(−uW)vj

W
(76)

≤e−ut
∑
jwje

ψ(−uW)v

W
(77)

=e−ut+ψ(−uW)v (78)

=e−ut+(euW−1−uW)v. (79)

Taking the minimum of the right hand side with respect to u gives P(Z≥t)≤e−vφ(t/Wv).

Now let’s prove Lemma C.9. We slightly abuse the notation for simplicity. Throughout this proof we use Bij as the set of all
bad ij,c-paths. To use Lemma D.4, we need to construct a proper fractional cover ofBcij. Let ∆1=⌊|Bcij|/cmc−1⌋. Note that by
the regular E-R condition, we know that each L∈Bcij has at most cmc−1 cycles that are correlated with L. By Hajnal-Szemerédi
theorem, there exists a partition of Bcij, namely {Bcij,k}

cmc−1

k=1 , where for any k, |Bcij,k|=∆1 or ∆1+1, and all paths in Bcij,k are
independent. This induces a proper fractional cover (Bcij,k,1). By Lemma D.4, for any t>0 we have

P( sup
fτ∈F(β)

∑
L∈Bc

ij

fτ(s
∗
L)>t+cmc−1max

k
EZk)<exp(−vφ( t

cmc−1v
)). (80)

where v=2minkEZk+V (β).
By lemma 7 of [25] we know that EZk≤C1

√
log|Bcij,k|/|Bcij,k|. By |Bcij,k| ≥∆1 we know log|Bcij,k|/|Bcij,k| ≤ log∆1/∆1.



By φ(x)> x
2 ln(1+x) and the definition of ∆1, let t= |Bcij|(2C1

√
log∆1/∆1+V (β)) in (80), we have

P

 sup
fτ∈F(β)

1

|Bcij|
∑
L∈Bc

ij

fτ(s
∗
L)>V (β)+(2C1+

1

∆1
)

√
log∆1

∆1


<exp

(
− ln2

2
∆1(2C1

√
log∆1

∆1
+V (β))

)
.

(81)

By the definition ofmc−1 we know that cmc−1∼max(nc−3pc−2,nϵ). Therefore ∆1=Ω(min(np,nc−2−ϵpc−1)). Since ∆1≥1,
Lemma C.9 is proved by lettingK′′=2C1+1.

E. Extension to any linear group with the metric induced by the Frobenius norm
Our algorithm LongSync can be extended to any linear group with the metric induced by the Frobenius norm. Let
DG(G1,G2)=∥G1−G2∥F be such metric defined on a linear group G. The update rule of LongSync becomes:

s
(t)
ij =

( ∑
L∈Nc

ij

w
(t)
L d

2
L/z

(t)
ij

)1/2
=
( ∑
L∈Nc

ij

w
(t)
L D

2
G(GL,Gij)/z

(t)
ij

)1/2

=

(( ∑
L∈Nc

ij

w
(t)
L ∥GL−Gij∥2F

)
/z

(t)
ij

)1/2

=

((〈 ∑
L∈Nc

ij

√
w

(t)
L GL,

∑
L∈Nc

ij

√
w

(t)
L GL

〉
−2
〈 ∑
L∈Nc

ij

w
(t)
L GL,Gij

〉
+
∑
L∈Nc

ij

w
(t)
L

〈
Gij,Gij

〉)
/
∑
L∈Nc

ij

w
(t)
L

)1/2

. (82)

With the same fc and gc in 3.1, we have the following proposition:

Proposition E.1. The update rule of of LongSync for any linear group in equation (82) is equivalent to the following matrix operations:

S(t)=

((〈
gc(
√
W (t),G),gc(

√
W (t),G)

〉
block
−2
〈
gc(W

(t),G),G
〉

block

)
⊘fc(W (t))+⟨G,G⟩block

)⊙1/2

(83)

where W (t+1)=A⊙exp(−βtS(t)).

Proof. We prove the proposition by comparing the ij-th element of the right hand side of equation (83) with (82). By the definition
of blockwise inner product, the ij-th block of the right hand side of equation (83) is((〈

gc(
√
W (t),G)(i,j),gc(

√
W (t),G)(i,j)

〉
−2
〈
gc(W

(t),G),Gij

〉)
/fc(W

(t))+⟨Gij,Gij⟩

)1/2

.

Note that by definition of gc, gc(
√
W (t),G)(i,j) =

∑
L∈Nc

ij

√
w

(t)
L GL, and gc(W (t),G)(i,j) =

∑
L∈Nc

ij
w

(t)
L GL. By the

definition of fc, fc(W (t))(i,j)=
∑
L∈Nc

ij
w

(t)
L . By directly comparing the terms we know that the right hand side of equation (83)

is the same as (82).

In view of this vectorized update rule, we propose the vectorized LongSync iterations for any linear group with l2 metric in
algorithm 2.

We remark that the theory of LongSync can also be adapted as long as the group is ’well-conditioned’, i.e. there exists constants
MG andmG only depending on G such that for any G∈G, the absolute value of the eigenvalues of G is betweenmG andMG.



Algorithm 2 (LongSync for any linear group)

Input: pairwise measurement matrix G, adjacency matrix A∈ [0,1]n×n, cycle length c, positive parameters {βt}t≥1, time step T
W (0)(i,j)←A
for t=0:T do

S(t)←
((〈

gc(
√
W (t),G),gc(

√
W (t),G)

〉
block
−2
〈
gc(W

(t),G),G
〉

block

)
⊘fc(W (t))+⟨G,G⟩block

)⊙1/2

W (t+1)←A⊙exp(−βtS(t))

end for
Output: edge weights W (T+1), corruption levels S(T)


