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Supplementary Material

S1. Related Work

EgoGen addresses the gap in egocentric synthetic data gen-
eration specifically tailored for head-mounted devices, situ-
ated at the intersection of three key areas: 1) General syn-
thetic data generation; 2) Egocentric simulation for embod-
ied agents; 3) Human-related synthetic data generation. For
a more detailed understanding of the distinctions between
EgoGen and existing methods, refer to Tab. S1, where these
three areas are clearly outlined within distinct blocks.

In particular, VirtualHome [16, 17] also provides ren-
dered egocentric views from head-mounted cameras. How-
ever, their egocentric videos lack fluctuating patterns due
to the absence of natural human motion; instead, they dis-
play robotic-like patterns as Habitat 2.0 [23]. We advance
closer to synthesizing more realistic data for head-mounted
devices. In addition, they lack a generative human motion
model, whereas ours can generate more diverse human mo-
tion and trajectories. A very recent work Habitat 3.0 [18]
introduced virtual humans to robotic simulation. However,
their human locomotion is synthesized by cyclically replay-
ing a walking motion clip from MoCap data along a pre-
calculated path with rigid rotations to transition to the next
walking direction. Both VirtualHome and Habitat 3.0 have
a limited number of human agents and fall short in repre-
senting diverse human characters, with limitations in body
shapes, ethnic variation, and clothing options. UnrealEgo
[1] is a large-scale naturalistic dataset for egocentric 3D
human motion capture, which employs downward-facing
cameras and replies on mocap data. It is used to estimate
the human body pose of the camera wearer. In contrast, we
employ front-facing cameras and perform generative human
motion synthesis for autonomous virtual humans.

Our synthetic data generation achieves increased diver-
sity by incorporating a walking path-free generative human
motion model, diverse body shapes, various body textures,
and varied 3D textured clothing.

S2. Ego-Sensing Driven Motion Synthesis

S2.1. Egocentric Sensing Calculation

As a compact and cheap-to-compute representation of depth
maps, egocentric sensing resembles the calculation of depth
information but is simplified into 2D.

As shown in Fig. S4, the location of the egocentric cam-
era is the midpoint of two eyeballs, and the viewing direc-
tion #»v is visualized as the red arrow. N rays are cast from
the location of the egocentric camera, with the central di-
rection of these rays determined by the 2D projection of #»v .

The starting points of these rays are identical, while their
endpoints form a semicircle in front of the virtual human,
representing the field of view [θmin, θmax] to the human.
Each ray has the potential to extend infinitely. In our imple-
mentation, N = 32, θmin = −90◦, θmax = 90◦.

The 2D collision detection of rays leverages the 2D lay-
out of the 3D scene. For illustration purposes, we simplify
the obstacles in 3D scenes with grey rectangles and visual-
ize the collision detection of rays in Fig. S1. The egocentric
sensing encodes the simplified depth of obstacles.

Figure S1. The 2D projection of the egocentric camera location
is represented by the purple point, while the 2D projection of the
viewing direction #»v is indicated by the red arrow. The field of
view changes due to the head pose.

S2.2. Reward, Weighting, and Training Detail

In our motion primitive environment, we design an intuitive
set of rewards to encourage the agent to perform realistic
human motions (all vectors are normalized in the following
equations):

Attention reward that encourages the human to look at
the goal:

rattention =
⟨ #»v , g − h⟩+ 1

2
, (1)

where #»v denotes the viewing direction, g and h denote the
goal location and current head location and ⟨·⟩ denotes the
inner product.

Foot contact reward rcont. contains two components:
Foot floor distance reward and foot skating reward.

rcont. = rfloor + rskate (2)

rfloor = e−(|minx∈F xz|−0.02)+ , (3)

rskate = e−(minx∈F ∥xvel∥2−0.075)+ , (4)



Table S1. Comparison of existing synthetic datasets or generators. (Sec. S1)

Domain Egocentric Head-mounted
Multi-Camera

rigs Virtual Humans
Automated

Clothing Simulation
Generative Human
Motion Synthesis

Kubric [10] Scattered Objects ✗ ✗ ✗ ✓ ✗ ✗
PointOdyssey [31] Point Tracking ✓ ✓ ✗ ✓ ✗ ✗

InfiniGen [19] Natural ✗ ✗ ✗ ✗ ✗ ✗
RoboGen [25] Robotics ✗ ✗ ✗ ✗ ✗ ✗
UniSim [27] Real-world Interaction ✓ ✓ ✗ ✗ ✗ ✗

UnityPerception [8, 24]
Object Detection
Pose Estimation ✗ ✗ ✗ ✓ rigged clothing ✗

uHumans2 [20] Scene Graphs ✓ ✗ ✗ ✓ ✗ ✗

Carla [7] Driving ✓ ✗ ✗ ✓ rigged clothing ✗
VirtualHome [16, 17] Household Simulation ✓ ✓ ✗ ✓ rigged clothing ✗

VRKitchen [9] Cooking Simulation ✓ ✓ ✗ ✗ ✗ ✗
Habitat 2.0 [23] Embodied Robots ✓ ✗ ✗ ✗ ✗ ✗

Habitat 3.0 [18]
Human-robot

Interaction ✓ ✗ ✗ ✓ ✗ ✗

UnrealEgo [1] Ego-pose Estimation ✓ ✓ ✓ ✓ rigged clothing ✗
GTA-Human [4] Pose Estimation ✗ ✗ ✗ ✓ ✗ ✗

BEDLAM [3] Pose Estimation ✗ ✗ ✗ ✓ ✗ ✗
SynBody [28] Pose Estimation ✗ ✗ ✗ ✓ ✗ ✗

ADT [14] Digital Twin ✓ ✓ ✓ ✗ ✗ ✗

EgoGen (ours)
Head-mounted

Devices ✓ ✓ ✓ ✓ ✓ ✓

where F denotes foot markers, xz denotes the marker
height, xvel denotes the marker velocity, and (·)+ denotes
clipping negative values. There are tolerance thresholds of
0.02m for foot-floor distance and 0.075m/s for skating.

Goal Distance reward that encourages the agent to get
closer to the goal at each step:

rdist = dt−1 − dt, (5)

Here dt denotes the body-goal distance at step t.
Body orientation reward that encourages the body for-

ward direction to be aligned with the goal location direction:

rori =
⟨ob, g − p⟩+ 1

2
, (6)

where ob denotes the body forward orientation, g and p de-
note the goal location and current pelvis location, and ⟨·⟩
denotes inner product. Different from the attention reward
that drives the head motion, this penalizes backward move-
ment toward the goal.

Penetration reward that penalizes the intersection of
the human body and obstacles. We use different penetra-
tion rewards in different settings.

When training in sparse scenes, e.g., a single static box
obstacle, penetration detection is simplified into 2D to ac-
celerate calculation:

rsparsepene =

{
0.05, |M0 ∩ Bxy(X)| < thres

0, otherwise
(7)

where M0 denotes the non-walkable cells on the ground
plane, Bxy(.) denotes the 2D bounding box of the body
markers X , ∩ denotes their intersection, and | · | denotes
the number of non-walkable cells within the bounding box

of the human. thres is set to 3 and the cell dimension is
0.1m× 0.1m.

When training in crowded scenes, we use the signed dis-
tance field (ΨO) for precise penetration detection:

rcrowded
pene = e−

1
T

∑T
t=1

∑|V |
i=1 |(ΨO(vti))−| (8)

where |V | denotes the number of SMPL-X mesh ver-
tices, T denotes the number of frames in our motion prim-
itive (T = 20), v denotes SMPL-X mesh vertex, and (·)−
denotes clipping positive values. The penetration reward
penalizes body vertices with negative SDF values within a
motion primitive.

Pose reward that penalizes generating unrealistic human
poses using VPoser [15] body pose prior:

rpose =

{
0.05, ∥V P∥2 < thres

0, otherwise
(9)

where ∥VP∥2 denotes the pose embedding inferred by the
VPoser encoder µ(·), where ∥VP∥2 = |µ(θ)|2. θ denotes
the SMPL-X body pose parameter representation. The
VPoser pose prior learns a probabilistic pose distribution
where vectors closing to zero have a high probability and
correspond to realistic human poses. In our observation,
∥VP∥2 > 15 produces unrealistic human poses. thres is
set to 11.

Success reward for reaching the goal location:

rsucc =

{
1, d < thres

0, otherwise
(10)

where d is the body-goal distance. thres is set to 0.1.



The weights for each reward are listed in Tab. S2. The
weighting of each reward is determined according to the
reward value. For example, the goal distance reward mea-
sures the distance change in one motion primitive spanning
0.5s, which is approximately 10 times smaller than other
rewards. As a result, its weight is 10 times bigger than oth-
ers. We observe high foot skating weight helps to reduce
foot skating. Higher success rewards encourage the agent
to reach the goal. But on the other hand, the weight can not
be too big. Because we did not do reward normalization,
too large values may lead to big errors in value estimation
and training instabilities.

Reward Weight

Foot floor distance 0.1
Foot skating 0.3

Goal distance 1
Body orientation 0.1

Attention 0.3
Penetration pretraining 1
Penetration finetuning 0.1

Pose 0.1
Success 0.5

Table S2. Reward weights.

Penetration Termination. We terminate an episode due
to penetration using different criteria. In sparse scenes, an
episode is terminated if rsparsepene = 0.

As mentioned in Sec. 3.2 in the main paper in crowded
scenes, we employ a two-stage RL training scheme. In
stage I, we pretrain the policy with a penetration weight of
wrpene = 1 to more effectively encourage the virtual human
to avoid obstacles and explicitly not perform penetration
termination. After convergence, in stage II, we proceed to
fine-tune the policy with a strict penetration termination us-
ing a reduced penetration weight of wrpene

= 0.1. Penetra-
tion detection involves considering the maximum number
of body vertices in penetration within a motion primitive.
An episode is terminated if:

max
t

|V |∑
i=1

|(ΨO(vti))−| ≥ thres (11)

where thres is set to 40.
This design has several reasons: 1) Our action space is

an unbounded Gaussian, direct training with strict termi-
nation can lead the policy to explore unreasonable spaces
and produce unrealistic human poses, see Fig. S8 for illus-
tration. 2) Reducing penetration weight during fine-tuning
can amplify the significance of the goal-reaching weight,
encouraging goal-reaching behaviors.

S2.3. PPO

Our PPO implementation is based on Tianshou [26]. We list
the hyperparameters of PPO in Tab. S3. c1, c2 are defined
in Sec. 3.2 in the main paper. “Repeat per Collect” is the
training iterations with the same collected rollouts.

Param Value

Learning Rate 3e-4
γ Discount 0.99

PPO Clip Threshold 0.1
Repeat per Collect 1

Value Function Coefficient (c1) 1
Entropy Coefficient (c2) 0.01

GAE (λ) 0.95
Max Grad. Norm 0.1

Table S3. PPO hyperparameters.

The majority of the hyperparameters were set to their de-
fault values. To note, adopting smaller values of “PPO Clip
Threshold” and “Repeat per Collect” will not update param-
eters too drastically and thus stabilize the training. We use
advantage normalization without value function clipping.

Another trick we adopted is that we performed the last
policy layer weight scaling, which makes initial actions
close to the standard normal distribution, which can boost
the performance [2].

The training time is roughly 20 hours on a GeForce RTX
3090 GPU with batch size 256, 20000 steps per epoch.

The key difference between our environment with others
is that our action space is not strictly bounded. The motion
primitive model P is based on VAE and is pretrained with a
KLD loss w.r.t. a standard normal distribution. As a result,
we do not do any action scaling or clipping during training.
Due to the nature of our action space, the learned policy can
deviate too much from the standard normal distribution. As
a result, we select the best model using the best test reward
and minimum KL divergence between the learned policy
action space and the standard normal distribution.

S2.4. Qualitative Failure Cases

Penetration with unseen objects (EgoBody scene) Penetration and unreached goals (16 humans switching)

Figure S2. Failure cases.



When evaluation significantly differs from training, fail-
ure cases may occur, including penetrations and unreached
goals. See Fig. S2.

S3. Egocentric Synthetic Data Generation

S3.1. Embodied Camera Placement

We support various camera placements in EgoGen.
For egocentric sensing-driven motion synthesis (Sec. 3 in

the main paper), we place one camera at the midpoint of two
eyeballs and the viewing direction #»v is shown in Fig. S4.
We use the SMPL-X [15] armature in Blender [5] to calcu-
late #»v . The two eye bones are visualized in Fig. S3.

Figure S3. Eye bones are located at the eyes and are highlighted
with orange edges.

Figure S4. Illustration of embodied camera placement. The cam-
era axes are determined by 1) The blue arrow of the eye bone (from
root to tip); 2) The green arrow from one eyeball to another; 3)
The red arrow representing the viewing direction #»v . (Sec. S2.1,
Sec. S3.1)

EgoGen also supports multi-camera rigs simulation.
With the information about the relative poses of cameras
within a rig, we have the flexibility to position the camera
at various locations on the head.

To further enhance realism, one may consider various
face shapes and physics simulations to place egocentric
cameras. We agree that simulating headset placement and
shifting can enhance realism. However, first, achieving

faithful simulation would involve modeling deformable hu-
man facial skin and muscles, which is an ongoing research
problem. Second, even with perfect modeling of the camera
extrinsic shifting, real-world devices can still have instru-
mental errors that may offset fine-grained simulation. As
an alternative, we considered that people can wear the head-
set with slightly different placements, and introduced noise
augmentation to simulate this (See Sec. S5.2: Egocentric
camera tracking). It might be effective to use aleatoric un-
certainty to model headset shifting and instrumental errors
together in a Bayesian way.

S3.2. Automated Clothing Simulation

As shown in Tab. S1, many prior works resort to gener-
ating synthetic data with rigged clothing, with unrealistic
clothing deformations. In contrast, BEDLAM [3] and Syn-
body [28] incorporate physics-based clothing simulation to
enhance realism and allow for dressing a diverse range of
body shapes in a wide array of clothing. However, their ap-
proaches are not scalable for handling arbitrary motion se-
quences produced by our generative human motion model.

We further automate clothing dynamics simulation
with the state-of-the-art clothing simulation network
HOOD [11]. HOOD treats each garment as a single graph
and predicts graph deformations due to both gravity and col-
lisions with the human body mesh.

First, we perform preprocessing on the 3D clothing mesh
from [3] to separate the upper garment and lower garment
into distinct clothing meshes because HOOD can not han-
dle disconnected graphs as input. Second, we sample pose
blend shapes, shape blend shapes, and average skinning
weights from the closest n SMPL-X mesh vertices in A-
Pose, where n = 1 for tight garments such as pants and
n = 1000 for loose garments such as dresses. We repose
the clothing meshes in A-Pose to match the body pose in
the first frame of a synthesized motion sequence. Then, for
lower garments, the vertices in the top ring are fixed to the
body to prevent dropping due to gravity. Finally, we simu-
late the upper and lower garments separately using HOOD.

S3.3. More Examples of Available Annotations

In addition to the fisheye cameras shown in the teaser, here
we show more ground-truth annotations with perspective
cameras, including RGBD, optical flow, bounding boxes,
segmentation masks, and surface normals in Fig. S5.

S4. Experiments

S4.1. Test Scenarios in Evaluation of CAMPs

We provide visualizations of how we built test scenarios.
Please refer to Sup. Vid. for qualitative results.



RGB Depth
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Segmentation Mask Surface Normal

Figure S5. Ground-truth annotations from perspective cameras.

Moving obstacle. Refer to Fig. S6 for an illustration of
the evaluation in scenes with moving obstacle. The moving
obstacle will move between the human and its goal location.

Multiple humans. To visually demonstrate, as depicted
in Fig. S7, we initiate four virtual humans from distinct
points in the figure. We require they walk to the opposite
location across the origin, either from A to B or from B to
A. There are no other obstacles. Please refer to Sup. Vid.
for qualitative results.

Path diversity. We assess walking path diversity with a
static obstacle fixed at the midpoint between the start and
target locations. Similar to Fig. S6, but the obstacle is not
moving anymore.

Figure S6. Moving obstacle test scenario illustration.

Figure S7. Multiple humans crowd motion test scenario illustra-
tion.

S4.2. Evaluation Metrics

The Foot contact metric [30] reaches 1 when there is foot-
floor contact and no foot skating, defined as:

scontact = e−(|min xz|−0.05)+ · e−(min ∥xvel∥2−0.075)+ ,
(12)

where xz and xvel denote the marker height and velocity,
0.05 and 0.075 are tolerance thresholds, and (·)+ denotes
clipping with the lowerbound of 0.

For moving obstacle scenes, we evaluate human-scene
penetration by detecting all frames where the floor plane
projections of any body parts and obstacles have intersec-
tions. For multiple human scenes, we measure the accurate
human-human penetration using the implicit human body
occupancy model COAP [12], which predicts the body oc-
cupancy given spatial location queries. Since the articulated
human bodies are complex and require accurate penetration
detection, we detect whether one human collides with other
humans by querying its body vertices using the occupancy
field of all other humans at that frame and report the occu-



pancy values for human-human penetration.

S4.3. Ablation Studies

No pretraining. Without our two-stage RL training
scheme, direct penetration termination in crowded scenes
will result in unrealistic predicted human poses. As shown
in Tab. 3 in the main paper, where ∥VP∥ = 28.77 > 15, we
provide visualizations of the corresponding unnatural poses
in Fig. S8. In contrast, our full model works well. Please
refer to Sup. Vid.

Figure S8. Ablation of our two-stage RL training. Without pre-
training, the model can produce unrealistic human poses.

S5. Egocentric Perception Tasks
S5.1. Mapping and Localization for AR

As shown in Fig. S9, we can leverage EgoGen to explore the
large-scale scene, add synthetic egocentric images into the
dataset, and build a more complete Structure-from-Motion
(SfM) map (Fig. S9b). In our implementation, we randomly
set the starting and target locations of virtual humans. Com-
pared with [13] that perturbs real-world cameras with ran-
dom noise (Fig. S9c) that may result in unrealistic camera
poses, EgoGen can simulate human trajectories and motion
(Fig. S9d).

The efficacy of synthetic data for a task relies on the
domain gap between synthetic and real-world images. In
the SfM pipeline in our experiment, the render-to-real gap
can influence the result of the feature extraction. As shown
in Fig. S10 on the left, detected feature points with Super-
Point [6] are much noisier in synthetic images due to scene
quality, which can make feature matching challenging. In
addition, the feature matcher SuperGlue [21] exhibits over-
fitting behaviors: visually similar images are preferred to
be matched first, i.e., it tends to match sim-sim and real-
real pairs only. As a result, simply adding synthetic images
into the real-world dataset will result in no matches between
synthetic and real-world images, making it impossible to
improve localization recall.

To ensure valid matching between synthetic and real-
world mapping images, during the pair selection process
using SuperGlue, we force synthetic images to match with
real images only. By implementing this approach, we can
achieve a denser SfM map by establishing matches be-
tween synthetic and real-world 2D image feature points
(see Fig. S10) and thereby triangulating more 3D points.

To enhance the localization performance of real-world
query images using the augmented SfM map, we enforce
matches with both synthetic and real mapping images for
all query images. This ensures that real-world query images
can be paired with synthetic mapping images, leveraging a
denser SfM map and enhancing localization recall.

(a) Real-world cameras (b) EgoGen synthetic cameras

(c) Perturbing existing cameras (d) EgoGen same # of cams as (c)

Figure S9. EgoGen addresses the issue of sparsity by populat-
ing the dataset with synthetic images. In Fig. S9a, the sparsity of
real-world mapping images is apparent, where each red object rep-
resents a camera and each colored dot represents a triangulated 3D
point. After applying EgoGen, mapping images are more densely
distributed, resulting in denser 3D triangulated points, as shown
in Fig. S9b. In Fig. S9c and Fig. S9d, we augment S9a with the
same amount of synthetic images using [13] and EgoGen respec-
tively. EgoGen generates synthetic data with a similar distribution
as human trajectories as illustrated in S9d. Results are visualized
using Colmap [22]. Note that we only visualize a subset of cam-
eras here.

S5.2. Egocentric Camera Tracking

The egocentric camera tracking task is evaluated using the
head rotation error, translation error, and pose error that
jointly accounts for both rotation and translation. The head
rotation error calculates the Frobenius norm of the differ-
ence between the matrix representations of the predicted
rotation Rpred and the ground truth rotation Rgt, which is
defined as:

erotation = ∥RpredR
−1
gt ∥2, (13)

The head translation error is computed as the mean Eu-
clidean distance of two sequences of head translations. The



Figure S10. Feature matching visualization for a render-to-real
image pair.

results are reported in the unit of millimeter.
The head pose error calculates the Frobenius norm of

the difference between the transformation matrix of the pre-
dicted head pose and ground truth head pose, which is given
by:

epose = ∥TpredT
−1
gt ∥2, (14)

S5.3. Human Mesh Recovery from Egocentric
Views

We simulate the data collection process of Egobody [29]
and let two virtual humans walk in the scanned scene
meshes from Egobody. We randomly sample gender, body
shape, and initial body pose and synthesize human motions
with our proposed generative human motion model to in-
crease data diversity.

The egocentric camera is attached to both humans and
we render the interactee from the camera wearer’s egocen-
tric view. Camera intrinsic is set similarly to the real-world
camera. For depth data generation, we omit the clothing
because the simulated depth sensor noise will remove de-
tail. For RGB data generation, to further increase data
diversity and close the sim-real gap, we randomly sam-
ple body texture and 3D textured clothing meshes from
BEDLAM [3] and perform automated clothing simulation
(Sec. S3.2) given arbitrary synthesized human motion se-
quences from our generative human motion model. In ad-
dition, we adopt random lighting in the rendering. In total,
we synthesized 105k depth images and 300k RGB images
with diverse body shapes, poses, skin textures, and cloth-
ing, along with ground-truth SMPL-X annotations. We will
release both of our synthetic datasets as a complement to
Egobody.

Qualitative results. We visualize our qualitative results
for HMR from depth in Fig. S11a and HMR from RGB

in Fig. S11b on real-world test data. With large-scale syn-
thetic data from EgoGen, we can compensate for the lack
of real-world data and improve the performance of current
models. “*-scratch” denotes models trained only with lim-
ited real-world data. “*-ft” denotes models pretrained with
our large-scale synthetic data and then finetuned with real-
world data.

Input depth Depth-scratch Depth-ftGround truth

0mm

120mm

(a) Human Mesh Recovery from Depth Images

Input RGB RGB-scratch RGB-ftGround truth
0mm

120mm

(b) Human Mesh Recovery from RGB Images

Figure S11. Qualitative results of HMR on EgoBody test set. The
body mesh color of the last two columns denotes the per-vertex
error between the predicted body and the ground truth.

Synthetic Data Samples. We show some examples of
synthetic data from EgoGen in Fig. S12.

Synthetic Dataset Statistics. The generated depth dataset
consists of 105000 depth images with 47107 male and
57893 female images. The generated RGB dataset con-
sists of 301073 depth images with 147862 male and 153211
female images. Both datasets cover a large range of in-
door interaction distances ranging from 0.60m to 5.02m.
Fig. S13a shows the distribution of the interaction distance
of the depth dataset and Fig. S13b shows the distribution of
the RGB dataset.



Depth

Noisy Depth

(a) Our synthetic depth images.

RGB

RGB with Motion Blur

(b) Our synthetic RGB images.

Figure S12. Synthetic data samples from EgoGen.

Additionally, we consider two types of “invisibility” of
the joints: frame-wise invisibility and joint-wise invisibility
ratio. The frame-wise invisibility ratio calculates the per-
centage of joints that are not on the image plane among
all body joints. The joint-wise invisibility ratio calculates
the ratio of frames when the joint is out of the image plane
among all frames.

An analysis of the invisibility distribution of the depth
dataset and the RGB depth distribution can be seen
in Fig. S14. Due to the different camera intrinsic of depth
and RGB sensor, the invisibility distribution is different.
From Fig. S14a, we can see that over 79% of the depth
frame contains more than 90% joints. This means most
depth images contain the full body. While from Fig. S14c
we can see that the RGB dataset yields higher invisibility.
The detailed invisibility of the joints is shown in Fig. S14d.
It illustrates that even though RGB images have a higher in-
visibility, the most frequently missing joints are the upper
or lower part of people (eyes and toes). In more than 85%
of the images, the pelvis joint can be found.

(a) 3d Distance on depth images.

(b) 3d Distance on RGB images.

Figure S13. Interaction Distance of synthetic samples from
EgoGen.

Table S4. Training scheme comparison of HMR. “-scratch”: train-
ing with limited real-world data only. “-ft”: transfer learning. “-
Mixed training”: training with mixed real and synthetic data to-
gether.

(All units are mm) G-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓ V2V ↓
Depth-scratch 117.7 82.2 54.1 100.6

Depth-ft 90.7 65.2 47.3 81.0
Depth-Mixed training 99.8 72.2 51.5 90.7

RGB-scratch - 90.7 59.9 102.1
RGB-ft - 85.3 56.2 97.2

RGB-Mixed training - 85.5 57.3 98.2

Training Details. We use data augmentation on the train-
ing dataset besides adding the motion blur. These methods
include using different kinds of image compression, bright-
ness and contrast modification, noise addition, gamma, hue
and saturation modification, conversion to grayscale, and
downscaling techniques. During training, we set the batch
size to 64 for the training on the depth dataset and 128 for
the training on the RGB dataset. We use the AdamW Opti-
mizer in the training process.

Impact of Training Schemes. We adopted transfer learn-
ing to improve generalization by transferring knowledge
from pretraining on synthetic data and refining features
through real-world data finetuning. Mixed training, as
shown in Tab. S4, is less effective than “-ft”, but still bet-
ter than training with limited real data only.
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(a) Frame-wise invisibility on depth images.
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(b) Joint-wise invisibility on depth images.
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(c) Frame-wise invisibility on RGB images.
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(d) Joint-wise invisibility on RGB images.

Figure S14. Invisibility Statistics.
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