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In the supplementary material, we first describe the de-
tailed collection pipeline of our real-world dataset LLE-
VOS in Sec. 1 (as a supplement to Sec. 3 in the main
paper), including the temporal synchronization, geometric
calibration, and the segmentation annotation. Then, we con-
duct more experimental comparisons with other methods on
LLE-DAVIS and LLE-VOS datasets in Sec. 2. Finally, we
present the diversity of our proposed dataset and provide
more qualitative results to further demonstrate the superior-
ity of our method in Sec. 4.

1. LLE-VOS Collection Pipeline

1.1. Hybrid Camera System

The hybrid camera system is equipped with two Davis346
event cameras [3] and a beam splitter guaranteeing that both
cameras record identical scenes. We provide details about
the temporal synchronization and geometric calibration be-
tween the two cameras below.

For temporal synchronization, we first connect the syn-
chronization signal trigger/receive ports of two cameras us-
ing a synchronous cable. Subsequently, one camera is des-
ignated as the master camera, and the other as the slave cam-
era. When the master camera starts capturing data, it sends
a trigger signal to the slave camera. Upon receiving this
signal, the slave camera begins synchronized data capture.
To ensure the synchronous capture of frames and events, we
employ software-based triggering for the recording process.
It is important to note that the communication time between
the two cameras is negligible. Ultimately, this approach en-
sures synchronized data acquisition between the two cam-
eras. For geometric calibration, we utilize a 5x8 chess-
board calibration pattern, waving it in front of the camera
setup to ensure visibility by both cameras. We select a cor-
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Figure 1. The platform we use to generate the annotation.

responding pair of images, one from the normal-light cam-
era view, denoted as Inorm and the other from the low-light
camera view, denoted as Ilow. Using a corner detection al-
gorithm, we detect the chessboard corners in both images.
Based on these detected corners, we employ an affine trans-
formation matrix to model the transformation between the
two cameras. Mathematically, we formulate it as:

plowi = H · pnormi , (1)

where H denotes a 3 × 3 transformation matrix, plowi =
[xlow

i , ylowi , 1]T and pnormi = [xnorm
i , ynormi , 1]T are the

homogeneous coordinates in the low/normal-light pairs. We
compute the transformation matrix

H =

 1.0088e+0 7.0321e−3 −1.2667e+1
−1.3069e−3 1.0103e+0 1.2477e+1
3.4419e−6 2.0457e−5 1.0000e+0

 . (2)

The computed reprojection RMS error is 0.2814 pixel. Ul-
timately, we apply the calculated matrix H to transform the
normal-light frame, achieving spatial alignment between
two camera views.



Method Input Indoor Scenes Outdoor Scenes Overall

J F J&F J F J&F J F J&F
STCN [NIPS2021] [2] I 0.486 0.321 0.403 0.400 0.309 0.354 0.445 0.316 0.380

XMem [ECCV2022] [1] I 0.664 0.528 0.596 0.507 0.456 0.481 0.590 0.494 0.542
AOT [NIPS2021] [6] I 0.699 0.618 0.659 0.592 0.571 0.581 0.649 0.596 0.623

DeAOT [NIPS2022] [5] I 0.716 0.643 0.680 0.580 0.580 0.580 0.653 0.614 0.633
STCN [NIPS2021] [2] E+I 0.522 0.360 0.441 0.460 0.354 0.407 0.493 0.358 0.425

XMem [ECCV2022] [1] E+I 0.732 0.616 0.674 0.525 0.465 0.495 0.635 0.545 0.590
AOT [NIPS2021] [6] E+I 0.745 0.674 0.709 0.590 0.574 0.582 0.673 0.627 0.650

DeAOT [NIPS2022] [5] E+I 0.746 0.678 0.712 0.596 0.604 0.600 0.675 0.643 0.659
Ours E+I 0.789 0.710 0.749 0.604 0.588 0.596 0.702 0.653 0.678

Table 1. Quantitative comparisons of various VOS methods on the real-world LLE-VOS dataset. ‘I’ and ‘E’ represent the input of images
and events, respectively. The best results are marked in bold.

Figure 2. Examples of our real-world LLE-VOS dataset
.
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Figure 3. Qualitative comparisons with other methods on the synthetic LLE-DAVIS and the real-world LLE-VOS datasets.

1.2. Segmentation Annotations

After collecting the event and image pairs, we employ 20
volunteers to assist us with the annotation. The annotation
platform is Label Studio [4], shown in Fig. 1. We eventually
export the results in the JSON format and process them into
masks.

2. Comparison with methods with E+I inputs
In this section, additional experimental results on the LLE-
VOS and LLE-DAVIS datasets are presented. For a fair
comparison, we utilize the event and image modalities as

input for recent state-of-the-art methods. First, we use an
event encoder and image encoder to extract the features.
Then we concatenate these two features as a query to com-
pute similarity in the memory bank. Finally, the matching
features are sent to the decoder to generate masks.

Tab. 1 provides a quantitative comparison of our VOS
method against existing state-of-the-art methods on the real-
world LLE-VOS dataset. The results are split into indoor
and outdoor scenes, along with an overall score. From these
results, it is clear that outdoor scenes present more of a chal-
lenge, generally yielding lower J and F scores across all
methods. Moreover, the addition of events shows a marked



Method Input LLE-DAVIS

J F J&F
STCN [NIPS2021] [2] I 0.424 0.453 0.438

XMem [ECCV2022] [1] I 0.465 0.477 0.471
AOT [NIPS2021] [6] I 0.540 0.578 0.559

DeAOT [NIPS2022] [5] I 0.541 0.571 0.556
STCN [NIPS2021] [2] E+I 0.450 0.498 0.474

XMem [ECCV2022] [1] E+I 0.507 0.534 0.521
AOT [NIPS2021] [6] E+I 0.555 0.614 0.584

DeAOT [NIPS2022] [5] E+I 0.566 0.608 0.587
Ours E+I 0.602 0.654 0.628

Table 2. Quantitative comparisons of various VOS methods on the
synthetic LLE-DAVIS dataset. ‘I’ and ‘E’ represent the input of
images and events, respectively. The best results are marked in
bold.

improvement in performance over image-only inputs. This
suggests that event data provides valuable information that
significantly helps VOS, especially in Indoor Scenes. Our
method demonstrates this improvement, achieving the high-
est J&F score of 0.678 overall, which highlights the effec-
tiveness of our approach on the LLE-VOS dataset.

Tab. 2 presents the performance comparison between our
method and other state-of-the-art approaches on the syn-
thetic LLE-DAVIS dataset, utilizing various combinations
of image and event data. It is observed that integrating
images with event data results in improvement over meth-
ods that rely solely on images. This enhancement confirms
the significant role of events, as they provide crucial sup-
plementary information that helps image data in video ob-
ject segmentation under low-light conditions. Compared to
these methods, our approach achieves the best. Specifically,
against the DeAOT method, our approach shows an increase
of 0.041 in the J&F score. These results clearly demon-
strate the effectiveness of our method in enhancing VOS
performance under challenging lighting conditions.

3. Real-world Dataset Showcase

We show more scenes in our LLE-VOS dataset, shown in
Fig. 2. It can be seen that our collected real-world dataset
has a diverse array of objects and scenes.

4. More Qualitative Results

Our dataset includes diverse scenes including indoor scenes
and outdoor scenes. We show the additional VOS results on
LLE-DAVIS and LLE-VOS datasets in Fig. 3. Our method
generates the relative complete mask and distinguishes the
overlap objects. Besides, our method could segment the in-
visible and fast objects in the LLE-VOS dataset.
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