Supplementary Material: Event-assisted Low-Light Video Object Segmentation
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In the supplementary material, we first describe the de-
tailed collection pipeline of our real-world dataset LLE-
VOS in Sec. 1 (as a supplement to Sec. 3 in the main
paper), including the temporal synchronization, geometric
calibration, and the segmentation annotation. Then, we con-
duct more experimental comparisons with other methods on
LLE-DAVIS and LLE-VOS datasets in Sec. 2. Finally, we
present the diversity of our proposed dataset and provide
more qualitative results to further demonstrate the superior-
ity of our method in Sec. 4.

1. LLE-VOS Collection Pipeline
1.1. Hybrid Camera System

The hybrid camera system is equipped with two Davis346
event cameras [3] and a beam splitter guaranteeing that both
cameras record identical scenes. We provide details about
the temporal synchronization and geometric calibration be-
tween the two cameras below.

For temporal synchronization, we first connect the syn-
chronization signal trigger/receive ports of two cameras us-
ing a synchronous cable. Subsequently, one camera is des-
ignated as the master camera, and the other as the slave cam-
era. When the master camera starts capturing data, it sends
a trigger signal to the slave camera. Upon receiving this
signal, the slave camera begins synchronized data capture.
To ensure the synchronous capture of frames and events, we
employ software-based triggering for the recording process.
It is important to note that the communication time between
the two cameras is negligible. Ultimately, this approach en-
sures synchronized data acquisition between the two cam-
eras. For geometric calibration, we utilize a 5x8 chess-
board calibration pattern, waving it in front of the camera
setup to ensure visibility by both cameras. We select a cor-
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Figure 1. The platform we use to generate the annotation.

responding pair of images, one from the normal-light cam-
era view, denoted as I,,,,,, and the other from the low-light
camera view, denoted as I;,,,. Using a corner detection al-
gorithm, we detect the chessboard corners in both images.
Based on these detected corners, we employ an affine trans-
formation matrix to model the transformation between the
two cameras. Mathematically, we formulate it as:

pliow —H. p'(wrm (1)
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where H denotes a 3 x 3 transformation matrix, pﬁ"w =

[, 2 17 and ppor = (a1 7o, 1T e the

homogeneous coordinates in the low/normal-light pairs. We
compute the transformation matrix

1.0088¢+0 7.0321le—3 —1.2667e+1
H = |-1.3069e—3 1.0103e4+0 1.2477e+1 |. (2)
3.4419e—6  2.0457e—5  1.0000e+0

The computed reprojection RMS error is 0.2814 pixel. Ul-
timately, we apply the calculated matrix H to transform the
normal-light frame, achieving spatial alignment between
two camera views.



Indoor Scenes Outdoor Scenes Overall

J FoIJ&F T F o IJ&F T F o IJ&F

STCN o021 [2] I 0486 0321 0.403 0400 0309 0354 0445 0316 0.380
XMem reevao [1] I 0.664 0.528 0.596 0.507 0.456 0.481 0.590 0494 0.542
AOT ies2021 [6] I 0.699 0.618 0.659 0.592 0.571 0.581 0.649 0.596 0.623
DeAOT irsa01 [5] I 0.716 0.643 0.680 0.580 0.580 0.580 0.653 0.614 0.633
STCN s [2] E+I 0522 0360 0441 0460 0354 0407 0493 0.358 0425
XMem pcevaey [1]7 E+I 0 0.732 0.616  0.674  0.525 0.465 0495 0.635 0.545 0.590
AOT s [6] E+I 0.745 0.674 0.709 0.590 0.574 0.582 0.673 0.627 0.650
DeAOT s [5] E4I 0.746  0.678 0.712  0.596 0.604 0.600 0.675 0.643 0.659
Ours E+I 0.789 0.710 0.749 0.604 0.588 0.596 0.702 0.653 0.678

Method Input

Table 1. Quantitative comparisons of various VOS methods on the real-world LLE-VOS dataset. ‘I’ and ‘E’ represent the input of images
and events, respectively. The best results are marked in bold.

Figure 2. Examples of our real-world LLE-VOS dataset
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Figure 3. Qualitative comparisons with other methods on the synthetic LLE-DAVIS and the real-world LLE-VOS datasets.

1.2. Segmentation Annotations

After collecting the event and image pairs, we employ 20
volunteers to assist us with the annotation. The annotation
platform is Label Studio [4], shown in Fig. 1. We eventually
export the results in the JSON format and process them into
masks.

2. Comparison with methods with E+I inputs

In this section, additional experimental results on the LLE-
VOS and LLE-DAVIS datasets are presented. For a fair
comparison, we utilize the event and image modalities as

input for recent state-of-the-art methods. First, we use an
event encoder and image encoder to extract the features.
Then we concatenate these two features as a query to com-
pute similarity in the memory bank. Finally, the matching
features are sent to the decoder to generate masks.

Tab. 1 provides a quantitative comparison of our VOS
method against existing state-of-the-art methods on the real-
world LLE-VOS dataset. The results are split into indoor
and outdoor scenes, along with an overall score. From these
results, it is clear that outdoor scenes present more of a chal-
lenge, generally yielding lower J and F scores across all
methods. Moreover, the addition of events shows a marked



Method Input LLE-DAVIS
J FJ&F
STCN pesao21 [2] 0.424 0.453 0.438

I
XMem ecevan [1] I 0.465 0477 0471
AOT pirsz0211 [6] | 0.540 0.578 0.559
DeAOT jnirsao [5] 1 0.541 0.571 0.556
STCN wiesa0o1) [2] E+I 0450 0498 0474
XMem iceva [1] E+41 0.507  0.534  0.521
AOT nieso0o1 [6] E+I 0555 0.614 0.584
DeAOT wrso [5] E+I 0.566  0.608  0.587
Ours E+I  0.602 0.654 0.628

Table 2. Quantitative comparisons of various VOS methods on the
synthetic LLE-DAVIS dataset. ‘I’ and ‘E’ represent the input of
images and events, respectively. The best results are marked in
bold.

improvement in performance over image-only inputs. This
suggests that event data provides valuable information that
significantly helps VOS, especially in Indoor Scenes. Our
method demonstrates this improvement, achieving the high-
est J&F score of 0.678 overall, which highlights the effec-
tiveness of our approach on the LLE-VOS dataset.

Tab. 2 presents the performance comparison between our
method and other state-of-the-art approaches on the syn-
thetic LLE-DAVIS dataset, utilizing various combinations
of image and event data. It is observed that integrating
images with event data results in improvement over meth-
ods that rely solely on images. This enhancement confirms
the significant role of events, as they provide crucial sup-
plementary information that helps image data in video ob-
ject segmentation under low-light conditions. Compared to
these methods, our approach achieves the best. Specifically,
against the DeAOT method, our approach shows an increase
of 0.041 in the J&F score. These results clearly demon-
strate the effectiveness of our method in enhancing VOS
performance under challenging lighting conditions.

3. Real-world Dataset Showcase

We show more scenes in our LLE-VOS dataset, shown in
Fig. 2. It can be seen that our collected real-world dataset
has a diverse array of objects and scenes.

4. More Qualitative Results

Our dataset includes diverse scenes including indoor scenes
and outdoor scenes. We show the additional VOS results on
LLE-DAVIS and LLE-VOS datasets in Fig. 3. Our method
generates the relative complete mask and distinguishes the
overlap objects. Besides, our method could segment the in-
visible and fast objects in the LLE-VOS dataset.
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