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Figure 1. Illustrations of (a) polarizing projections, (b) candidate images collection, (c) adversarial example generation, and (d) feed
forward gradient backward of the polarization-RGB-based glass segmentation model PGSNet [2]. vi represents the pixel value for the
projected monochromatic image. [Ii, ρi, ϕi] denote captured polarization cues, including intensity, DoLP, and AoLP maps, and si are the
same data in the form of Stokes parameters. S2P represents the conversion between Stokes parameters and Polarization cues. Black and
red dashed lines in (c), (d) counts for flows of data feed-forward and gradients backward propagation.

1. Whitebox Attack on Glass Segmentation

1.1. Implementation Details

We propose to employ locally controllable polarizing pro-
jection to fool the polarization-RGB-based glass segmen-
tation model, PGSNet [2], in the physical world. We con-
trol the polarizing projection by projecting specific images
according to the principle of our adapted one-chip LCD
projector. In general, physical world adversarial attacks
require realistic simulations of targeted objects as well as
scenes injected with adversarial perturbations, e.g., projec-
tion, shadow, and stickers, to search a robust and effective
adversarial perturbation pattern. However, polarization re-
flection modeling requires accurate pBRDF parameters and
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geometries that are unavailable in the wild. Thus, we pro-
pose a simplified approach for constructing a simulation of
high precision. Our perturbation is a map of grids, which
optimized to construct a perturbation robust enough to be
captured in the complex real world. The adversarial per-
turbation should be estimated in an optimization-based ap-
proach in whitebox attack. To avoid physics-based sim-
ulation of polarized light transports from the projector to
the camera, which involves the non-linear function of the
projector and polarization reflection modeling, we generate
adversarial examples from a set of candidate real captures
whose projection values are known. Concretely, we first set
the projector (ELEPHAS W13 after hardware modification)
and RGB-P camera (BFS-U3-51S5PC-C equipped with the
IMX250MYR Polar-RGB sensor) in the same place and
both look forward to the target scene.
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Figure 2. Visual comparisons for adversarial attacks on the Deep SfP-wild [2].
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Figure 3. Visual comparisons for adversarial attacks on the Deep SfP-wild [2].

Then, we project flat grayscale images of a gray level
vp = {v1, v2, ..., vK} uniformly sampled from 0 to 255,
which causes projections with constant polarizing direc-
tions, as shown in Figure 1(a). Next, we capture a sequence
of real world images as a set of basis images. As shown
in Figure 1 in the form of polarization cues, in contrast to
few differences between the intensity images I, their AoLP
maps ϕ are significantly changed by polarizing projections.
In Figure 1(c), the basis images in the form of Stokes pa-
rameters are integrated into sae with a set of optimizable
weight maps Ω = {ω1, ω2, ..., ωK} through the SoftMax
function as:

sae =

K∑
i

exp(ωi/τ)∑K
j exp(ωj/τ)

(si − sb) + s∗b . (1)

The integration [Iae, ρae, ϕae] is fed into PGSNet as an ad-
versarial example, to optimize the coefficient maps Ω, as

shown in Figure 1(d). After the optimization, the best pro-
jection value in each grid is selected from {v1, ..., vK} by
ArgMax function.

1.2. Experiment

Figure 2 and 3 present additional visual results from our
polarization projection attacks. When contrasted with re-
sults under unpolarized illumination or those stemming
from random perturbations, it becomes evident that our op-
timized polarizing projections consistently effectuate potent
and resilient adversarial attacks in real-world settings. Fig-
ure 3 illustrate the results of glass detection and attacks
against a complex background, indicating that the model
has some ability to recognize complex backgrounds but is
more sensitive to attacks. Therefore, even random projec-
tions can affect accuracy, which proves the effectiveness
of our proposed polarization projection device in attacking



polarization-based vision models.

2. Whitebox Attack on SfP-wild
2.1. Implementation Details

We employ an identical approach when evaluating our
attacks on the state-of-the-art Deep SfP-wild model [1].
Specifically, we establish a grid size of 2. The Gaussian
blur is applied with a kernel size of 7 × 7, and the standard
deviation is sampled within the range of 4 to 6. Moreover,
we designate a step size of α = 1000 and undertake 500
iterations for perturbation updates.

2.2. Experiment

Figure 4 presents an extended set of visual outcomes from
our physical world attacks. Implementing such an adversar-
ial attack is challenging due to several factors: the markedly
low precision of projection, the disparity between digital
and physical realms, and the constraints of available polar-
ization reflection patterns. Despite these hurdles, our results
compellingly demonstrate that our approach can effectively
deceive the Deep SfP model. The quantitative comparison
for the collected 2 scenes are shown in Table 1. A perturba-
tion with a lower resolution and optimized with EOT takes
more robust attakcing performance in a physical-world sce-
nario.

Table 1. Quantitative comparison. The numbers denote grid sizes,
and * represents the perturbation generated w/o EOT.

MAE (◦) ↓ Ours-1* Ours-2* Ours-1 Ours-2
Digital 25.76 26.50 21.11 23.08
Physical 43.64 41.73 41.02 38.23

3. Fooling DoLP-based Color Constancy
The DoLP-based color constancy algorithm [3] relies on
polarization properties of reflections to infer the global il-
lumination. The algorithm uses DoLP to search achromatic
pixels within an image, whose reflection color directly re-
flects color of light source. For chromatic pixels, a robust
prior knowledge and an assumption are applied, that their
white-balanced color should be opposite to its DoLP color,
and the AoLP of secular and diffuse reflection polarizing in
orthogonal directions. For most lighting conditions in the
wild, the assumption is well grounded as illuminations of
non-polarization or low-polarization dominate, and global
illuminations generally convey limited intensity caused by
reflections from other objects or interreflections. However,
our polarizing projection is capable of emitting linearly po-
larized light through separate color channels.

As the algorithm utilizes simple statistic computation to
estimate a global lighting ratio, we believe an intuitive yet
effective way can destroy the color constancy algorithm, by

simply projecting colors of three channels in different po-
larizing directions. To evaluate it, we apply several sim-
ple projection settings. While diffuse polarization is barely
influenced by polarization state of incident light, specular
reflections well retain linearity of incident light.

3.1. Experiment

Figure 5 showcases images that have been restored using es-
timated white-balance ratios under conditions heavily influ-
enced by our polarizing projections. Notably, these images
are predominantly characterized by specular reflections. In-
triguingly, the results reveal that despite reflections exhibit-
ing elevated DoLP values in certain channels (such as blue
and green), the algorithm is misdirected to estimate a cyan
illumination. This misestimation further amplifies the red
channel, as evidenced in Figure 5 by the RGB value [255,
0, 0].

4. Blackbox Attack on HPSfP
The human pose and shape estimation from polarization
(HPSfP) [4] method proposes to employ the polarization
cues for the specific shape estimation scenario, human, and
further leaveraging the geometric cues for human pose es-
timation. This approach significantly outperforms prior
RGB-based methods. However, our experiments reveal its
performance instability under polarized projections. As il-
lustrated in Figure 6, while the method estimates resonable
human pose and shape under unpolarized illumination yup,
estimations under uniformly polarized projection y45

◦

ae and
randomly polarized projections of varying resolutions ykae
significantly diverge from the original results.
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Figure 4. Visual comparisons for adversarial attacks on the Deep SfP-wild [1].
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Figure 5. Color constancy [3] results and visualizations of DoLP, AoLP under different color-wise polarization projections. Notice that our
projection is always constant white light, and the labels denote color-wise values of polarizing perterbation.
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Figure 6. Illustrations for blackbox attacks on HPSfP [4] using different projections. The figures display both the images and AoLP maps
alongside the resulting pose and shape estimations.
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