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A1. Proof of Theorem 1
The proof is based on [4, 9]. We first introduce the Vector Bernstein inequality presented in [4].

Theorem A1 (Vector Bernstein). Let x1, . . . ,xn be independent, zero-mean vector-valued random variables with common
dimension d. We have the waeker Vector Berstein version as follows
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where V =
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is the sum of the variances of the centered vectors xi.

Corollary A1. Let x1, . . . ,xn be independent, zero-mean vector-valued random variables with common dimension d. As-
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Proof. Simply apply Theorem A1 with x̂i = wixi.

Now we can apply the above concentration results to prove Theorem 1.

Proof. First we separately bound the bias and variance, then use Corollary A1. The bias is:∥∥∥∥∥
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Hence, the bias is bounded by
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Applying Corollary A1 to xt = xt − f (xt), we have that

P

(∥∥∥∥∥
T∑

t=1

wt (yt − f (xt))

∥∥∥∥∥ > k

)
≤ exp(− ϵ2

8M2∥w∥22
+

1

4
). (13)
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Setting the right hand side of the high probability bound to δ, we have concentration w.p. 1− δ for k satisfying
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Rearranging, we find
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Combining this with the triangle inequality,∥∥∥∥∥
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with probability 1− δ. Since 1/
√
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Write α = 1− λ. The inner part of the bound is optimized when

4
√
M ·

√
α ·
√
log
(
e−

1
4 /δ
)
= Gβ · γ

α
(28)

⇔ α3/2 =
Gβγ

4
√
M
√
log(e−

1
4 /δ)

(29)

⇔ α =
G2/3β2/3γ2/3

42/3 ·M1/3 ·
(
log
(
e−

1
4 /δ
))1/3 , (30)

for which the overall inner bound is
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If T is sufficiently large, the 1/
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)
term will be less than 2 . In particular,
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=⇒ 1
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Since log(1 + α) > α/2 for α < 1, it suffices to have T > 4/α.

A2. Proof of Lemma 1
Proof.

E
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Eqn. (33) uses the assumption that mt is an unbiased estimator to ∇L(wt). Then with σ = 1, we complete the proof.

A3. Proof of Theorem 2
Proof. Denote wt+1/2 = wt + ρ ∇LB(wt)−mt
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The last step using the fact that ∥a− b∥2 ≤ 2∥a− c∥2 + 2∥c− b∥2. Then taking the expectation on both sides gives:
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For the last term, we have:
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Plugging Eqn. (40) and (41) into Eqn. (39), we obtain:
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Taking summation over T iterations, we have:
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This gives
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where w∗ is the optimal solution, ∆ = E[L(w0)− L(w∗)],Θ = 2βMγ0 + ρ20β
3γ0, and Π = ρ20β

2.

A4. Extension to SAM’s variants
Since we only modify the perturbation of SAM, our modification can be straightforwardly extended into the SAM variants,
such as ASAM [5] and FiserSAM [3]. For SAM variants, their min-max objectives can be written into a unified formulation:

min
w

max
∥T−1

w ϵ∥≤ρ
L(w + ϵ), (49)

where Tw is a normalization operator, e.g., Tw = ∥w∥ for ASAM. The inner maximization problem in Eq. (49) can then be
solved via first-order approximation as follows:

ϵs = ρ
T 2
w∇LB(w)

∥Tw∇LB(w)∥2
. (50)

To incorporate our improvement, we can modify Eqn. (50) as follows:

ϵs = ρ
T 2
w (∇LB(wt)− σmt)

∥Tw (∇LB(wt)− σmt) ∥2
. (51)
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Figure A1. Results on enlarging the batch size of SAM’s adversarial perturbation.

A5. Investigation Details
A5.1. Experimental Settings

We follow the training setting of our main experiments.

Training from scratch. We train the models for 200 epochs and set the initial learning rate as 0.05 with a cosine learning
rate schedule. The momentum and weight decay are set to 0.9 and 0.0005 for SGD, respectively. SAM adopt the same
setting except that the weight decay is set to 0.001 following [6, 8]. We apply standard random horizontal flipping, cropping,
normalization, and cutout augmentation [1]. For SAM and its modified variants, we set the perturbation radius ρ as 0.1 and
0.2 for CIFAR-10 and CIFAR-100 [6, 8].

Transfer learning. We use a Deit-small model [10] pre-trained on ImageNet. We use AdamW [7] as base optimizer and
train the model for 10 epochs with batch size 128, weight decay 10−5 and initial learning rate of 10−4. We adopt ρ = 0.075
for SAM and its modified variants. We apply image resizing (to 224×224) and normalization for data preprocessing without
extra augmentations.

SAM’s modified variants. 1) SAM-full: we use full gradient ∇L(w) over the entire training dataset to calculate SAM’s
perturbation, i.e., ϵs = ρ ∇L(w)

∥∇L(w)∥ ; 2) SAM-db: we use an extra random batch data B′ to calculate SAM’s perturbation, i.e.,

ϵs = ρ ∇LB′ (w)
∥∇LB′ (w)∥ 3) SAM-noise: we use residual projection direction w.r.t. the full gradient to calculate the perturbation,

i.e., ϵs = ρ
Proj⊤∇L(w)∇LB(w)

∥Proj⊤∇L(w)
∇LB(w)∥ . We align the gradient of the model parameters as a vector to perform gradient projection.

A5.2. More Experiments on Effects of Full Gradient Component

To further substantiate the detrimental effects of strengthening the full gradient components, we conducted additional exper-
iments on the CIFAR-100 dataset using the VGG16-BN architecture, as illustrated in Figure Fig. A1.

A6. Training curves
In Fig. A2, we compare the training curves of SAM and F-SAM. We observe that F-SAM achieves a faster convergence than
SAM especially on the initial stage. This is because at the initial stage, the proportion of the full gradient component in the
minibatch gradient is more significant,and hence removing this component to facilitate convergence in F-SAM has a more
pronounced effect. Moreover, as the perturbation radius grows (2x in this case), the magnitude of the full gradient component



in ϵs also grows. This can significantly hinder the convergence of SAM and degrade its performance. In contrast, F-SAM is
able to mitigate this undesired effects and maintain a good performance.
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Figure A2. Training curve comparison on CIFAR-100 with ResNet-18.

A7. Hessian Spectrum
In Fig. A3, we compare the Hessian eigenvalues of ResNet-18 trained with SAM and F-SAM. We focus on the largest
eigenvalue λ1 and the ratio of the largest to the fifth largest eigenvalue λ1/λ5. We approximate the calculation for Hessian
spectrum using the Lanczos algorithm [2]. We observe that F-SAM achieves a smaller largest eigenvalue and smaller eigen-
value ratio compared with SAM. This confirms that F-SAM converges to a flatter solution and achieves better generalization
by removing the undesirable full gradient component in adversarial perturbation.
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Figure A3. Hessian spectrum comparison on CIFAR-10 with ResNet-18.
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