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1. Supplementary Related Works
1.1. Hyperbolic Representation

Hyperbolic representation has emerged in deep learning to
encode hierarchical tree-like structure and taxonomy [14,
47, 71]. It has been applied in computer vision for hier-
archical action search [39], video action prediction [69],
and hierarchical image classification [12, 27, 38]. Long et
al. [39] project video and action embeddings in the hyper-
bolic space and train a cross-modal model to perform hier-
archical action search. In this work, we use hyperbolic em-
beddings to encode the hierarchical geometry of our struc-
tured semantic space.

1.2. Visual-Language Learning

Visual-language learning recently shows potential in learn-
ing generic representations [22, 58, 65, 74, 77]. Specifi-
cally, CLIP [58] and ALIGN [22] benefit from web-scale
curated image-text pairs for training and allow zero-shot
transfer to many downstream tasks. Following works [35,
73] adapt CLIP to video recognition via prompting, tempo-
ral modeling, etc. However, it may be hard for their im-
plicit language embedding to capture the subtle taxonomy
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and structure knowledge of action semantics. Thus, we pro-
pose to solve the problem via a structured semantic space.

1.3. 3D Human Representation

3D Human Representation has been attracting much atten-
tion for a long time. A most intuitive representation is
the 3D human pose, and lots of effort has been put into
single-view 3D pose reconstruction [31, 45, 49, 67]. Some
methods [49, 67] directly regress 3D pose from the given
image. With great progress given in 2D pose estimation,
many works [31, 45] adopt pre-detected 2D poses as aux-
iliary inputs. DensePose [19] proposes to adopt a UV map
to represent the dense correspondence between the image
and a human mesh, which could function as a 2.5D human
representation. Lately, different parametric human body
models (like SMPL [41] and SMPL-X [52]) are proposed
as promising human representations. Impressive perfor-
mance has been achieved with weak supervision, like 2D
pose [8, 25, 41, 52, 68], semantic segmentation, motion dy-
namics, and so on. Also, different paradigms are proposed.
Some works [40, 50] directly fit the parametric model to
the weak supervision signals, which is accurate but sensi-
tive to the initial state, and the speed is restricted. While
there are also regression methods [8, 25, 68] learning a
neural network to map images to human model parame-
ters, greatly accelerating the reconstruction but losing ac-
curacy. Combining the advantages of both kinds of meth-
ods, SPIN [29] and EFT [24] proposed to adopt regression
methods for initialization and then use fitting methods for
refinement. Inspired by the recent progress in NeRF [46],
HumanNeRF [75] proposed a neural radiance field repre-
sentation for free-view dynamic human modeling.

1.4. 3D Action Generation

3D Action Generation is an active field. With large skeleton
datasets such as NTU [37] and Human3.6M [21], consider-
able efforts have been put on it [20, 53, 54, 70, 78]. Mean-
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while, MoCap datasets [20, 44] push it further towards para-
metric human model-based generation [53]. Most efforts
are either unconditional or conditioned on restricted action
classes. Beyond class conditioned generation, some works
conduct generation with natural language [54, 70] based on
datasets composed of motion-text pairs [55, 56].

2. Details of Pangea Database

2.1. Data Curation

With the structured semantic space, We can collect data
with diverse modalities, formats, and granularities, and
adapt them into a unified form. Our database Pangea con-
tains a large range of data including images, videos, and
skeletons/MoCaps. We give more details of the processing
and formulation as follows:

1) Semantic consistency. The class definitions of
datasets are various, but they can be mapped to our seman-
tic space with the fewest semantic damages. As mentioned
in the main text, the mapping is completed via manual an-
notation with the help of word embedding [58] distances
and OpenAI GPT-3.5. Manual annotation is the most accu-
rate and most expensive, while word embedding compari-
son is the least. Thus, we adopt a hybrid method: poten-
tial class-node mapping is first filtered out roughly by com-
paring word embedding, then selected via GPT-3.5 prompt-
ing, and finally checked by human annotators. As more and
more classes are aligned and covered, the process would be
faster and faster with synonyms checking.

Suppl. Fig. 1 shows a flow chart of the action semantic
mapping by human annotators. We invite 60 annotators of
different backgrounds. Each candidate class is annotated
three times, generating the final labels via the majority rule.
Finally, for the 898 verb nodes (including 575 leaf nodes),
there are a total of 515 verb nodes that have corresponding
retargeted classes (including 290 leaf nodes). The missing
verb nodes are mostly related to visually unrecognizable se-
mantics, e.g., invest.

2) Temporal consistency. Some videos [4] only have
sparse labels for a whole clip instead of each frame. To
solve this conflict, we sample the clip with 3 FPS and give
them the label of their belonged clip describing the action
in the clip. More dense or spare sampling is either compu-
tationally costly or with serious information loss. On the
contrary, with dense frame labels [18], we can easily get the
clip label via fusing frame labels. Thus, we provide both
frame- and clip-level labels for videos.

3) Spatial consistency. There are both instance
(boxes) [6] and image [5] level labels. It is too expensive to
annotate all missing human boxes and actions to make the
whole Pangea instance-level. More realistically, we merge
the instance labels of each image/frame into image/frame
labels. In the future, we can also add more box labels to

Begin
Choose a 

verb node

Read its text 

description 
Choose an action class

Read its example 

image

Among verb members 

of the verb nodes,  

select those related to 

the action class.

All actions 

traversed?
All nodes 

traversed?
End

No

YesYes

No

Figure 1. The flow chart of the action semantic mapping by human
annotators.

existing images based on the existing instance labels to sup-
port larger-scale instance-level training.

4) 3D format consistency. 3D action datasets typically
have different formats, e.g., SMPL [40] contains 24 key-
points while CMU MoCap [20] has 31 key-points. To keep
format consistency, we transform all of them into SMPL via
a fitting procedure.

5) 2D-3D consistency. Image/video datasets mostly
contains only 2D labels without 3D human labels. We
generate 3D humans via single-view reconstruction [68].
Please refer to Suppl. Sec. 2.2 for more details.

2.2. 3D Human Body Annotation Details

We adopt 3D humans for multiple reasons. First, 3D human
provides a robust representation without viewpoint prob-
lems. Second, 3D humans can be seen as the safest choice
as the physical carrier of actions with no need to consider
the domain gap across image conditions.

In Pangea, we also prepare pseudo 3D human labels for
images/videos. Different strategies are adopted depending
on the label circumstances of the data. For different scenar-
ios with ground truth (GT) 2D or 3D human poses, human
boxes only, and no human instance labels at all, we adopt
different strategies as follows:
1. If an image has a 3D human pose annotation, we fit the

SMPL model to the 3D pose and associate the fitted 3D
human body with the annotation. The 2D body is ac-
quired by cropping the image with the bounding box.

2. If an image has a 2D human pose annotation, we cal-
culate the MSE error of the annotated pose and the re-
projected pose from 3D recovering and associate the an-
notated human instance with the reconstructed 3D body
whose MSE error is the lowest among all and lower than
a threshold. The 2D body representation is acquired by
cropping the image with the box.

3. If an image has a human bounding box annotation, we
calculate the IoU between the annotated box and the re-
projected human mesh bounding box. Then, the anno-
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Figure 2. Semantic distribution of samples on 290 leave nodes, including detailed statistics on tail/head verb nodes.

tated human box is associated with the 3D human body
whose IoU is the highest and higher than a threshold.
The 2D body representation is acquired by cropping the
image with the bounding box.

4. If an image contains no human annotation, OpenPose [3]
is adopted to generate a pseudo annotation for the 2D
human pose. Then we follow the same association strat-
egy as images with 2D pose annotation. We assume the
human instance with the lowest MSE error is the target
human performing the annotated action.

5. For mesh sequences, we directly adopt them as 3D hu-
mans. Besides, for skeleton sequences without a 2D im-
age available, we align the annotations with joints de-
fined by SMPL and extract the 3D human body by fitting
the SMPL model to the aligned pose.

Note that the 3D human pose and the corresponding/re-
projected 2D pose could be easily extracted simultaneously.
Images/frames with no human bodies or failure reconstruc-
tions were dropped. In practice, ROMP [68] and EFT [23]
are adopted to directly recover humans from images.

2.3. More Statistics of Pangea

We list the collected datasets of Pangea in Suppl. Tab. 1.

2.4. Justifications of Database Design Choices

The class-node mapping is selected via GPT-3.5 prompt-
ing. We choose GPT-3.5 because of its excellent
instruction-following abilities and easy-to-use API. In fu-
ture work, we will extend our work with more powerful
LLMs (e.g., GPT-4) or locally deployed LLMs (e.g., Llama
2).

SMPL. We choose SMPL mainly for its versatility and

expressiveness since most data either provide SMPL param-
eters or could be conveniently converted into SMPL format.

ROMP & EFT. We find ROMP with EFT optimiza-
tion managing to process our massive data efficiently with
promising reconstruction quality. We would keep refining
the data quality with the progress in 3D human reconstruc-
tion on our open-sourced website.

2.5. Semantic Distribution of Pangea

Suppl. Fig. 2 shows the sample count for 290 leaf verb
nodes of our Pangea database. Detailed statistics on
tail/head verb nodes are also listed.

2.6. Data License/Address

All the data of Pangea are from open-sourced datasets and
for research purposes only. We give the data licenses and
links of the gathered datasets here.
• Willow Action: https://www.di.ens.fr/
willow/research/stillactions/

• Phrasal Recognition: https://vision.cs.uiuc.
edu/phrasal/

• Stanford 40 Action: http://vision.stanford.
edu/Datasets/40actions.html

• MPII: http://human-pose.mpi-inf.mpg.de/
• HICO: http://www- personal.umich.edu/

˜ywchao/hico/
• V-COCO: https://www.v7labs.com/open-
datasets/v-coco

• HAKE: http://hake-mvig.cn/download/
• HMDB51: https://creativecommons.org/
licenses/by/4.0

• HAA500: https://www.cse.ust.hk/haa/
LICENSE
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https://creativecommons.org/licenses/by/4.0
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Action Classes Images/Frames Videos

Image

Willow Action [10] 7 1 K -
Phrasal Recognition [61] 10 4 K -
Stanford 40 Actions [76] 40 4 K -
MPII [2] 410 4 K -
HICO [5] 600 38 K -
HAKE [32] 156 42 K -

Video

HMDB51 [30] 51 69 K 7 K
HAA500 [9] 500 64 K 8.5 K
AVA [18] 80 162 K 0.5 K
YouTube Action [36] 11 4 K 1 K
ASLAN [28] 432 18 K 1 K
UCF101 [66] 101 61 K 13 K
Olympic Sports [48] 16 6 K 1 K
Penn Action [79] 15 85 K 2 K
Charades [63] 157 44 K 8 K
Charades-Ego [64] 157 235 K 8 K
ActivityNet [13] 200 2,444 K 20 K
HACS [80] 200 1,379 K 504 K
Home Action Genome [59] 453 702 K 6 K
Kinetics [4] 700 14,132 K 536 K

Image+Video Pangea 4,296 19,495 K 1,116 K

Skeleton/MoCap

HumanAct12 [20] 12 90 K 1 K
CMU MoCap [20] 8 978 K 1 K
UTD-MHAD [7] 27 90 K 1 K
NTU RGB+D [62] 120 830 K 114 K
Human3.6M [21] 17 3,600 K <1 K
BABEL [56] 260 4,050K 10K
HAA4D [72] 300 212K 3K

Total Pangea 5,040 29,345 K 1,247 K

Table 1. Statistics of collected and curated multi-modal datasets. Note that different datasets may share part of action classes (e.g.,
ActivityNet [13] and HACS [80]).

• AVA: https : / / creativecommons . org /
licenses/by/4.0

• Youtube Action: http://www.cs.ucf.edu/

˜liujg/YouTube_Action_dataset.html
• ASLAN: https://talhassner.github.io/
home/projects/ASLAN/ASLAN-main.html

• UCF101: https://www.crcv.ucf.edu/data/
UCF101.php

• Olympic Sports: http://vision.stanford.
edu/Datasets/OlympicSports/

• Penn Action: http://dreamdragon.github.
io/PennAction/

• Charades: http : / / vuchallenge . org /
license-charades.txt

• Charades-Ego: https://prior.allenai.org/
projects/data/charades-ego/license.txt

• ActivityNet: http : / / activity - net . org /
download.html

• HACS: http://hacs.csail.mit.edu/
• Home Action Genome: https : / /
homeactiongenome.org/index.html#what-
we-do

• Kinetics: https://creativecommons.org/
licenses/by/4.0

• HumanAct12: https : / / github . com /
EricGuo5513/action-to-motion

• CMU MoCap: http://mocap.cs.cmu.edu/
• UTD-MHAD: https://personal.utdallas.
edu/˜kehtar/UTD-MHAD.html

• NTU RGB+D: https://rose1.ntu.edu.sg/
dataset/actionRecognition/

• Human3.6M: http : / / vision . imar . ro /
human3.6m/eula.php

• BABEL: https://babel.is.tue.mpg.de/
license.html

• HAA4D: https://cse.hkust.edu.hk/haa4d/

3. Details of P2S

3.1. Label Augmentation Details

We detail the label augmentation here. Each image has a
partial annotation Y = {yi|yi = 1, 0, ∅}Ni=1, where 1, 0 are
certain positive/negative labels, and ∅ are uncertain ones.

A direct way to solve the uncertain labels is assuming
negative: unobserved labels are considered as negatives.
That is, for ∀i, if yi = ∅, assign yi = 0. However, some
positive labels are falsely treated negatively, which hinders
semantic learning, especially for few-shot nodes. There-
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Figure 3. Illustration of label augmentation. Pseudo labels are
generated based on VerbNet semantic/geometry co-relation. With
generated pseudo labels, we can finetune P2S with more samples,
which especially benefits verb nodes with rare samples.

fore, we propose to generate pseudo labels for uncertain la-
bels, instead of simply treating them as negatives. That is,
if yi = ∅, assign yi = y

′

i ∈ [0, 1]. The pseudo label y
′

i is
generated based on the structure and language prior to our
semantic space. The pre-defined geometry and semantic in-
formation in VerbNet indicate the co-relation between verb
nodes. Based on the co-relation, high-quality nodes with
more samples can transfer knowledge (positive/negative la-
bels) to low-quality nodes with fewer samples, thus generat-
ing pseudo labels to apply label augmentation and facilitate
P2S learning. The process is illustrated in Suppl. Fig. 3.

In the implementation, we first obtain a co-relation ma-
trix C = {cij}N×N of N verb nodes via language priors
and VerbNet structure. Then pseudo labels are generated
based on C and certain labels. That is, for each i where
yi = ∅, we assign y

′

i =
∑

j:yj=1,j ̸=i

cijyj .

The co-relation matrix C is calculated from two com-
ponents: 1) CL based on language priors; 2) CE based
on VerbNet structure. For CL, we encode the seman-
tic information of each verb node into li via a pretrained
text encoder [16] and then construct CL = cos(li, lj),
where cos(·, ·) measures the cosine similarity of two vec-
tors. For CE , based on the trained hyperbolic embeddings
E = {ei}Ni=1, we obtain CE = −dL(ei, ej), where dL(·, ·)
is the Lorentzian Distance (detailed in Suppl. Sec. 3.2). Fi-
nally, we normalize both CL and CE into [0, 1] and obtain
C via C = (CL + CE)/2.

With label augmentation, the long-tail distribution is ef-
fectively alleviated with credible pseudo labels. The sample
distribution before/after generating pseudo labels is shown
in Suppl. Fig. 4. We can find that many tail nodes have
more samples after the augmentation which alleviates the
long-tailed distribution a lot. To benefit from label augmen-
tation, we train P2S mapping in two phases. In phase 1, the
whole model is trained via assuming negative. In phase 2,
we finetune the model with certain labels and pseudo labels.
Phase 2 benefits from the eased long-tail distribution, thus
facilitating P2S learning.

Another consideration is to bind prediction with soft or
hard pseudo labels. For soft labels, we directly use the
pseudo label y

′

i ∈ [0, 1] as ground truth. For hard labels,
we consider only pseudo labels above the given threshold
and use y

′

i ∈ {0, 1} as ground truth. We find hard labels
drag the performance a little, possibly because of the am-
plified noise of generated pseudo labels. Thus, we adopt
soft labels in practice.

3.2. Lorentz Model for Verb Hierarchy

Preliminaries [11]. Lorentz model represents a hyperbolic
space of n dimensions on the upper half of a two-sheeted
hyperboloid in Rn+1. We refer to the hyperboloid’s axis
of symmetry as time dimension and all other axes as space
dimensions [11]. Every vector x ∈ Rn+1 can be written as
[xspace,xtime], where xspace ∈ Rn and xtime ∈ R.

Let ⟨·, ·⟩ be Euclidean inner product and (·, ·)L denote
the Lorentzian inner product that is induced by the Rie-
mannian metric of the Lorentz model. For two vectors
x,y ∈ Rn+1, it is computed as follows:

(x,y)L = ⟨xspace,yspace⟩ − xtimeytime. (1)

The induced Lorentzian norm is ∥x∥L =
√
(x,x)L. The

Lorentz model possessing a constant curvature −c is de-
fined as the following set of vectors:

Ln = {x ∈ Rn+1 : (x,x)L = −1/c, c > 0}. (2)

All vectors in this set satisfy the following constraint:

xtime =
√
1/c+ ∥xspace∥2. (3)

Lifting Embeddings onto the Hyperboloid [11]. We
map the physical representation V = {vi}Ni=1 and node
representation E = {ei}Ni=1 into the Lorentz model as vLi
and eLi via the exponential map. Let the embedding vec-
tor (vi, gi) be venc ∈ Rn. We need to apply a transforma-
tion such that the resulting vector lies on the Lorentz hyper-
boloid Ln in Rn+1. Let the vector v = [venc, 0] ∈ Rn+1.
We parameterize only the space components of the Lorentz
model (venc = vspace) [11]. Due to such parameterization,
we can simplify the exponential map as:

xspace =
sinh(

√
c∥vspace∥)√

c∥vspace∥
vspace. (4)

The corresponding time component xtime can be computed
from xspace using Eq. 3. The resulting x always lies on the
hyperboloid. To prevent numerical overflow, we scale all
vectors vspace in a batch before applying the mapping using
two learnable scalars ωimg and ωtxt. These are initialized to√
1/n so that the Euclidean embeddings have an expected

unit norm at initialization.
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Figure 4. Sample distribution before/after generating pseudo labels.

Lorentzian Distance [11]. The similarity S(vi, ei) is
measured via the negative of Lorentzian distance dL(·, ·)
between vLi and eLi . A geodesic is the shortest path between
two points on the manifold. Geodesics in the Lorentz model
are curves traced by the intersection of the hyperboloid
with hyperplanes passing through the origin of Rn+1. The
Lorentzian distance between two points x,y ∈ Ln is:

dL(x,y) =

√
1

c
· cosh−1(−c(x,y)L). (5)

Entailment Cone [11]. If yi = 1, the physical represen-
tation vLi should lie inside the entailment cone [14] of the
node representation eLi .

For each x, which narrows as we go farther from the
origin, the entailment cone is defined by the half-aperture:

α(x) = sin−1

(
2K√

c∥xspace∥

)
, (6)

where a constant K = 0.1 is used for setting boundary con-
ditions near the origin. We aim to identify and penalize
occasions where the paired image embedding y lies outside
the entailment cone. For this, we measure the exterior angle
θ(x,y) = π − ∠Oxy:

θ(x,y) = cos−1

(
ytime + xtimec(x,y)L

∥xspace∥
√
(c(x,y)L)2 − 1

)
. (7)

If the exterior angle is smaller than the aperture, then the
partial order relation between x and y is already satisfied
and we need not penalize anything, while if the angle is
greater, we need to reduce it. This is captured by the fol-
lowing loss function (written below for a single x,y pair):

Lentail(x,y) = max(0, θ(x,y)− α(x)). (8)

4. Details of S2P
Though we focus on P2S mapping, with the learned abun-
dant semantic representation of nodes and the collected 3D

data, we wonder if we can do the inverse mapping, i.e.,
Semantic-to-Physical space (S2P). S2P should be scalable
to different semantic granularities and flexible with either
single- or multi-node and generate reasonable 3D motions.
We propose a simple model to verify our assumption. We
train conditional Variational Auto-Encoders (cVAE) condi-
tioned on the node semantic and geometric encoding E to
map S to P . The encoder takes the E and V as input, out-
putting the mean µ and log-variance σ for a Gaussian dis-
tribution, from which we sample a latent encoding z. z is
concatenated with E and then fed to the decoder, getting
the reconstructed V ′. We adopted SMPL [40] parameters
as V . For a sample belonging to multiple nodes, we take
the mean of their corresponding E as the condition. We
train S2P on the 3D data of Pangea, using KL divergence
driving the predicted distribution to normal distribution and
an L2 reconstruction loss of the SMPL parameters.

The encoder and decoder in the cVAE are implemented
as a 2-layer MLP. The semantic and geometric encoders in
P2S are frozen during S2P. The model is trained on Pangea
using an Adam optimizer for 100 epochs, with a batch size
of 256. The learning rate is warmed up from 5e-8 to 2e-
6 for the initial 2 epochs and then decayed with a cosine
scheduler.

5. Datasets Details in Experiments

HICO [5] is an image-level benchmark for Human-Object
Interaction (HOI) recognition. It has 38,116 and 9,658 im-
ages in the train and test sets and defines 600 HOIs com-
posed of 117 verbs and 80 COCO objects [34]. Each image
has an image-level label which is the aggregation over all
HOIs in an image without human boxes. We use mAP for
multi-label classification.

HAA [9] is a video clip-level human-centric atomic ac-
tion dataset. It defined 500 actions and contains 10,000
video clips which are split into 8,000 training, 500 validat-
ing, and 1,500 testing clips. Each video clip has one single
action label. The top-1 accuracy metric is utilized for multi-



class classification.

HMDB51 [30] is a video clip-level dataset consisting of
6,766 internet videos over 51 classes, and each video has
from 20 to 1,000 frames. Each video clip has one single
action label. We report the average top-1 accuracy on the
standard three splits.

Kinetics-400 [26] is a video clip-level human-focused
dataset that includes 240 K training clips and 20 K valida-
tion clips over 400 action classes. Each video lasts for about
10 seconds and contains one single label. We report the top-
1 accuracy and top-5 accuracy on the official validation set
as the convention.

BABEL [56] is a large-scale 3D action dataset cover-
ing a wide range of human motions, including over 250
unique action classes. It is built upon AMASS [44] by an-
notating the sequences with sequence-level and frame-level
action classes, represented with the SMPL/SMPL-X body
model [40, 50]. Over 43.5 hours of MoCap data is pro-
vided with 28,033 sequence labels and 63,353 frame labels
and is categorized into one of 260 action classes. We fol-
low the evaluation protocol of BABEL-120 under the dense
label-only setting, containing a span of MoCap sequences
belonging to 120 classes, where 13,320 sequences are di-
vided into train (60%), val (20%), and test (20%) sets. A
motion-capture span of 5 seconds or less is given, and our
model is required to predict the actions in it. Top-1 accu-
racy is reported. To show our ability in the long-tail classes,
the Top-1-norm (the mean Top-1 across classes) is also re-
ported. We adopt PointNet++ [57] trained on Pangea as ini-
tialization and finetune it on BABEL. Note that the BABEL-
120 benchmark is based on motion sequences. To adapt our
model to the setting, we down-sample the original sequence
from 60 FPS to 3 FPS, perform inference on all the down-
sampled frames, and use mean pooling to acquire the final
score.

HAA4D [72] is an extension of HAA [9]. 3,300 videos
of 300 human atomic action classes from HAA are selected
to construct a class-balanced and diverse dataset. Each
video is annotated with globally aligned 4D human skele-
tons. We follow the conventional action classification set-
ting and data split [72]. For classes containing 20 samples,
the first 10 samples are adopted for training, and the rest
are used for inference. For classes containing 2 samples,
the one with a bigger index is adopted for training, while
the other one is adopted for inference. We adopt Point-
Net++ [57] pretrained on Pangea as initialization and fine-
tune it on HAA4D. Since HAA4D only provides 4D skele-
tons, we fit the provided skeletons with SMPL [40] and
use the SMPL parameters for training and inference. We
perform inference on all the down-sampled frames and use
mean pooling to acquire the final score.

6. Details of Image/Video Transfer Learning

6.1. Transfer Learning Stages

P2S pretrained on Pangea with node classification is a
knowledgeable backbone and can be used in transfer learn-
ing. There are three stages in transfer learning: a) Training
P2S on Pangea, but with the val & test sets of the down-
stream target dataset excluded following a strict transfer
learning setting. b) Finetuning P2S on the target dataset
train set. c) Training a small MLP to transform Snode to
Sact, with the node prediction fixed.

6.2. Training P2S

For the convenience of expression, we divide our Pangea
database in Suppl. Tab. 1 into 4 splits: 1) Willow Ac-
tion [10] ∼ HAKE [32]: image datasets; 2) HMDB51 [30]
∼ Charades [63]: video datasets with relatively small scale;
3) Charades-Ego [64] ∼ Kinetics [4]: video datasets with
relatively large scale; 4) HumanAct12 [20] ∼ HAA4D [72]:
skeleton/MoCap datasets.

We select images from split 1&2 to construct Pangea test
set to represent verb node semantics. The remaining im-
ages are used for training. We first train a CLIP model with
image-text pairs to get good physical representations, and
then freeze the physical representations and train P2S.

To train physical representations, we use a CLIP pre-
trained ViT-B/32 image encoder to extract visual features
with a resolution of 224. An AdamW [42] optimizer with a
weight decay of 0.05 is used in training. We first use split
1&2 data to train the model for 15 epochs with a batch size
of 256 (split 3 is currently excluded to avoid the image do-
main gap). The learning rate is warmed up from 5e-7 to
1e-5 for the initial 2 epochs, then decayed with a cosine
scheduler. Then we use split 1&2&3 data to finetune the
model for 50 epochs with a batch size of 256. The learning
rate is warmed up from 5e-8 to 2e-6 for the initial 2 epochs,
then decayed with a cosine scheduler. When training with
split 1&2&3 data, a fixed number of samples from split 3
data are randomly sampled in each epoch for efficiency.

To train P2S, we freeze the physical representations and
train the text encoders and the hyperbolic representations.
The model is trained for 5 epochs with a batch size of 64.
The learning rate is warmed up from 5e-8 to 2e-6 for the
initial 2 epochs, then decayed with a cosine scheduler.

Additionally, HMDB51 data is excluded from the train-
ing data to prevent data pollution because it has three
train/test splits that intersect with each other. Also, for
transfer learning on Kinetics-400, we use a new P2S model,
where we exclude the data in Kinetics-700 but not in
Kinetics-400 to prevent data pollution.



6.3. Video Temporal Encoding

For video benchmarks, we adopt lite implementations for
temporal encoding and do not use video augmentation
methods. For the simplest temporal coding, we cut out fixed
8 frames for each video clip and average logits of 8 frames
as the clip logit. We compare several simple temporal cod-
ing methods on HAA [9] transfer learning.
• Average prediction of frames. In training, supervision is

applied to each frame. In testing, predictions of 8 frames
are averaged as the clip prediction. Our P2S achieves
71.40% acc with this temporal encoding.

• Mean pooling. Frame-level visual features are first ex-
tracted, and the clip-level visual feature is obtained via
simple mean pooling of frame-level ones. In training, su-
pervision is applied to each clip. In inference, the clip
prediction is directly outputted. With feature mean pool-
ing, our P2S achieves 71.02% acc.

• Temporal transformer. It is operated similarly to mean
pooling, other than a temporal transformer inserted be-
fore the mean pooling of frame-level features. With the
temporal transformer, our P2S achieves 71.47% acc.

From the above results, we can find that with a more so-
phisticated model, the performance is higher too. In future
work, we believe a larger model with more computation
power support will achieve more significant performance
improvements with our Pangea. In this work, we report P2S
results with average prediction of frames temporal encoding
for simplicity. Even with a very simple temporal encoding,
P2S performs comparably with some spatio-temporal (ST)
methods. P2S can also be used as a plug-and-play method,
we report the results of fusing P2S with SOTA video mod-
els.

6.4. HICO

With the pretrained P2S (Suppl. Sec 6.2), we first finetune
P2S on the HICO train set for 10 epochs, with a batch size
of 64. The learning rate is warmed up from 5e-7 to 1e-5 for
the initial 2 epochs, then decayed with a cosine scheduler.
We then train the transformation from Snode to Sact with the
node prediction fixed. The model is trained for 50 epochs,
with a batch size of 64 and a learning rate of 1e-4.

We find that HICO [5] designed for human-object
interaction (HOI) recognition (verb-object, e.g.,
sit on-chair) is more difficult than common ac-
tion recognition (verb, e.g., sitting). Moreover, most
of Pangea data are videos and thus have a larger domain
gap with HICO. Thus, compared with other video-based
benchmarks, HICO [5] benefits less from P2S pretraining.

6.5. HAA

With the pretrained P2S (Suppl. Sec 6.2), we conduct the
transfer learning. We finetune P2S on the HAA train set
for 10 epochs, with a batch size of 64. The learning rate

is warmed up from 5e-7 to 1e-5 for the initial 2 epochs,
then decayed with a cosine scheduler. Then we train the
transformation from Snode to Sact with the node prediction
fixed. The model is trained for 40 epochs, with a batch size
of 64 and a learning rate of 2e-4.

For the experiments of integrating P2S with MLLM, we
tried a SOTA MLLM: LLaMA Adapter V2 [15].

When trained without P2S, the backbone is finetuned
on train set to output captions indicating the activity. The
prompt is formulated as

“Generate caption of this image”.

The model is required to answer:

“The image shows a person’s activity: XXX.”

(e.g. “The image shows a person’s activity: shuffle dance.”)
Then the top-1 accuracy is calculated by comparing the se-
mantic distance between the output caption and ground-
truth actions based on a CLIP [58] ViT-B/32 pretrained text
encoder.

When trained with P2S, we formulate P2S prediction as
a prompt and require the LLM to output the activity shown
in the image. In detail, the prompt is formulated as

“Some information related to the person’s activity is: XXX.
Describe the person’s activity.”

The model is required to answer:

“The image shows a person’s activity: XXX.”

To fuse the model w/ and w/o P2S, during inference,
we ensemble the semantic distances between captions w/wo
P2S and ground-truth action caption described above. For
HICO[5], as the model is required to give a list of HOIs con-
taining one verb and one object each, we extract the HOIs
from the generated caption, compare the semantic distances
between predicted HOIs and GT HOIs, and calculate mAP
following standard evaluation protocol.

We prepare the data following the setting of stage 2/stage
1 for models w/wo P2S. The model is trained following the
setting of stage 1 on both occasions.

6.6. HMDB51

With the pretrained P2S (Suppl. Sec 6.2), we first finetune
P2S on HMDB51 train set for 10 epochs, with a batch size
of 64. The learning rate is warmed up from 5e-7 to 1e-5
for the initial 2 epochs, then decayed with a cosine sched-
uler. Then we train the transformation from Snode to Sact

with the node prediction fixed. The model is trained for
10 epochs, with a batch size of 512. The learning rate is
warmed up from 5e-7 to 1e-5 for the initial 2 epochs, then
decayed with a cosine scheduler.



6.7. Kinetics-400

With the pretrained P2S (Suppl. Sec 6.2), we conduct: a)
Finetuning P2S on Kinetics-400 train set for 15 epochs,
with a batch size of 192. The learning rate is warmed up
from 1e-7 to 2e-6 for the initial 5 epochs, then decayed with
a cosine scheduler. b) Training the transformation from
Snode to Sact with the node prediction fixed. The model is
trained for 20 epochs, with a batch size of 512. The learning
rate is warmed up from 1e-7 to 2e-6 for the initial 5 epochs,
then decayed with a cosine scheduler.

We find a decreased performance when pre-trained with
CLIP-Pangea on Kinetics-400. This is possibly caused by
the large data scale and complex action classes (400 total)
of Kinetics-400 compared with other downstream datasets.

7. Details of 3D Transfer Learning

For 3D human point clouds, we use PointNet++ [57] as the
encoder. An AdamW [42] optimizer with a weight decay
of 0.05 is used. The model is trained for 100 epochs with
a batch size of 128. The learning rate is warmed up from
5e-8 to 2e-6 for the initial 2 epochs, then decayed with
a cosine scheduler. For P2S learning, we use 601 K 3D
training human instances and test the model on Pangea test
set with 172 K 3D human instances. About 75% of the
human instances are obtained from single-view reconstruc-
tion [23, 68]. We adopt GT 3D human for BABEL [56] and
use reconstructed 3D human for other datasets.

7.1. BABEL

To show the strength of P2S, we further conduct transfer
learning on a large-scale 3D action dataset BABEL [56].
We compare our method with the BABEL official base-
line [56]. We adopt 2s-AGCN as the baseline following BA-
BEL [56], which utilizes temporal information. Besides, we
use PointNet++ and CLIP as extra baselines. Surprisingly,
we find that the simple pipeline PointNet++ considerably
outperforms its counterpart 2s-AGCN. On one hand, we
find that the baseline CLIP performs not well. The reason
may be that, without enough 3D pretraining data, the image-
based CLIP cannot adapt to the domain of BABEL well.
It can be verified that CLIP-Pangea performs much better
and even outperforms PointNet++-Pangea with the help of
3D pretraining samples from Pangea. On the other hand,
PointNet++ performs much more robustly than CLIP as it
is designed to encode the 3D point cloud information which
suits this task better. However, they all perform worse than
our P2S. As shown, P2S without heavy temporal encoding
outperforms all baselines. PointNet++-Pangea and CLIP-
Pangea also show superiorities upon their original setting
PointNet++ and CLIP thanks to the extensive knowledge
from Pangea.

Results on Sandwich Benchmark

Rare

Non-Rare

Non-Rare 类，157节点，mAP=46.54

Rare 类，133节点，mAP=23.19

丰富的Rare/Non-Rare节点划分，
以及较为均衡的性能

Figure 5. P2S performance on selected rare/non-rare verb nodes
on Pangea benchmark. There are a total of 133 rare nodes and 157
non-rare nodes.

7.2. HAA4D

Transfer learning is also conducted on the recently proposed
3D action dataset HAA4D [72]. We compare our method
with the HAA4D official baseline [72]. From the compar-
ison of results, we draw a similar conclusion to the one on
BABEL. As shown, competitive performance is achieved
with the help of Pangea pretraining for PointNet++ and
CLIP. Meanwhile, the proposed methods such as disentan-
gling, semantic, and geometric encoding help P2S further
outperform all baselines and SOTA. We also notice that the
improvement on HAA4D of P2S upon the SOTA method
SGN is relatively smaller. We recognize the reason as two-
fold. First, HAA4D provides 3D keypoints as GT anno-
tation, thus we have to fit the SMPL model to the key-
points for the SMPL parameters. This results in noisy inputs
for P2S. Second, HAA4D tends to focus more on human
atomic body motions. The frames are therefore less dis-
criminative, weakening the performance of our frame-level
P2S on HAA4D.

8. Additional Results of P2S and S2P
8.1. Action Recognition with P2S

We list performance on selected rare/non-rare verb nodes
on Pangea benchmark in Suppl. Fig. 5. Our P2S achieves
decent performance on both rare and non-rare verb nodes.

Suppl. Fig. 6 further illustrates two examples of images
and predicted verb node logits from the Pangea test set. For
each leaf node with high prediction, its verb members and
parent node are shown.

We make further analysis and discussion of Pangea pre-
training benefits as follows. a) 3D vs. 2D Benchmark:
P2S presents more evident performance improvement in 3D
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Figure 6. Example images and predicted verb node logits from the Pangea test set.

Figure 7. Consistency analysis upon CLIP and our method.

benchmarks mainly because: 1) Nature of tasks. Typi-
cally, the 3D benchmarks have smaller-scale train/test sets
and simpler baselines than 2D image/video benchmarks. 2)
Smaller domain gap. Various datasets from the Pangea
database share SMPL parameters as 3D representations,
whose domain gap is smaller than 2D image/frame pixels.
b) Image vs. Video Benchmark: P2S performs better
in image benchmark (HICO) as the baseline is a concise,
image-based one, rather than a sophisticated video-based
model. c) Variations within Video Benchmarks: P2S
shows different benefits across video benchmarks since: 1)
Size of pre-training data. For example, Kinetics-400 is a
large-scale dataset. Pangea per-training data which is not
from Kinetics-400 accounts for a relatively smaller propor-
tion. 2) Node samples distribution. Benchmarks are de-
fined on their labels, thus mapped to different nodes. If its
nodes have fewer samples in Pangea, the benchmark tends
to benefit less from P2S and perform worse. To roughly
estimate the benefits from node samples distribution, for

a benchmark b, we adopt an indicator Ib =
∑N

i=1 cnt
P
i ·

min(1, cntbi ). Here, N : number of nodes, cntPi /cntbi : sam-
ple counts of node i in Pangea/b, min(1, cntbi ): whether
b has samples for node i. For HAA/HMDB/Kinetics-400,
Ib is 93M/66M/92M. The gap between HAA (93M) and
HMDB (66M) verifies this.

8.2. P2S Consistency Analysis

To measure the robustness of models, we carry out a con-
sistency test. We follow the setting of [17] and choose
100 head nodes from Pangea. For each node, we chose
20 positive image samples and 20 negative samples. The
negative samples are chosen from images of other nodes
randomly. Each image has undergone 17 transformations.
The first 13 transformations are color-related transforma-
tions: grayscale, low contrast, noisy, salt and pepper noise,
eidolon, false colourm, highpass, lowpass, phase scram-
bling, power equalization, rotating 90 degrees, rotating 180
degrees, and rotating 270 degrees. The last 4 transforma-



tions are style changing, edge extracting, human parsing,
and surreal. For the so-called surreal transformation, we
grab a constructed 3D human mesh from one image and
paste it into another background.

Given the results of our method and the baseline CLIP,
we make an evaluation based on the metrics proposed in
[17] and calculate the observed consistency and error con-
sistency. Observed consistency and error consistency are
calculated concerning every node. For every node, the ob-
served consistency is near or over 60%, the error consis-
tency is between 20% and 30%. There are three trans-
formations with striking high consistency, namely human
parsing, eidolon, and surreal. We believe that it is because
these three transformations are too difficult. Thus, we take
the results of all nodes with the 3 weird high-consistency
transformations deleted. The final results are shown in
Suppl. Fig. 7.

We can find that on both observed and error consisten-
cies, our method P2S performs better than CLIP. Thus, our
method not only achieves better accuracy on recognition but
also performs more robustly.

8.3. 3D Motion Generation with S2P

We further visualize more results of S2P in Suppl. Fig. 8.

In detail, we align the samples by the pelvis joint, elimi-
nate the root rotation along the z-axis to make the face ori-
entation consistent, and draw skeletons for 100 samples of
the same node in the same figure to show the sample distri-
bution. As illustrated, S2P is capable of generating reason-
able poses for various nodes. And different nodes hold dif-
ferent geometric characteristics. For example, ride poses
have elbows away from the spine; sit poses tend to have
elbows near the spine; while there appears to exist more
limb contraction for kneel and sleep. Also, sample gen-
eration of node combination is also accessible. By adding
the condition cellphone upon sit, the wrist of the gen-
erated samples is restricted to distribute around the pelvis
more. Another interesting example is that adding walk
upon hug amplifies the motion range. We show rare com-
binations like kneel plus hug. We also show some failure
cases of our S2P in Suppl. Fig 9. As shown, when the node
combination becomes more complicated, e.g., combining
nodes with a larger semantic gap, our S2P could fail to gen-
erate accurate 3D actions. Here, we only use a simple cVAE
to implement S2P. We believe more advanced models such
as Transformer [43] or Diffusion [78] could generate more
diverse and realistic 3D actions based on Pangea. We leave
this to future work.

Representation Method Full Non-Rare Rare
SMPL MLP 8.32 12.47 3.42
VPoser MLP 7.81 11.31 2.55
KeyPoints MLP 5.45 8.44 1.92
Point Clouds PointNet++ 9.16 12.76 3.76
Point Clouds CLIP 11.57 16.12 6.21

Table 2. Comparison of different 3D representations on Pangea
benchmark.

9. Additional Ablation Studies
9.1. 3D Representation in P2S

To find the best feature extractor for 3D action data, we
have tried different ways. Specifically, we compared the
performance of different representations of the 3D data:
(i) SMPL[40] parameters, (ii) VPoser[50], (iii) body key-
points, and (iv) body point cloud. Note that our dataset only
contains SMPL parameters and the other 3 representations
are all generated from the SMPL parameters.

For the first 3 representations, we utilize two separate
MLPs to encode and classify the 3D data. For the point
cloud, we use the PointNet++[57] as the 3D encoder, with
an MLP as the classifier, which is referred to as Pointnet++
in the main text and Suppl. Tab. 2. Moreover, we also
evaluate the CLIP-like classifier, where the cosine similar-
ity between the encoded point cloud feature and the node
semantic feature encoded by a text encoder is adopted as
the final classification score. This is referred to as CLIP in
the main text and Suppl. Tab. 2. Suppl. Tab. 2 shows the
results of different 3D representations on the Pangea Bench-
mark. Specifically, in some instances of the Pangea dataset,
ROMP [68] fails to reconstruct 3D human bodies from the
images. For these images, we eliminate these 3D data from
the dataset during training and evaluation.

Among these four representations, the point cloud
achieves the best results. As for the method, we find that
the performance of the model is further improved with a
CLIP-like classifier.

We also evaluate the contribution of certain P2S com-
ponents under the 3D only setting. For example, without
disentanglement, the performance degrades to 10.34 mAP,
with a considerable performance decline of 2.51 mAP on
the Rare set, proving the efficacy of our disentanglement
strategy again.

9.2. 2D-3D Fusion in P2S

We compare different 2D-3D fusion strategies in the P2S
model. Note that since Pangea contains data from different
sources, some of which do not provide GT 3D human anno-
tation, we adopt ROMP [68] to generate pseudo 3D human
annotations. Suppl. Tab. 3 shows the performance com-
parison of fusing the multi-modal data at different model
stages. Early and middle fusion means that we fuse the ex-
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Figure 8. More S2P results.
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Figure 9. Failure cases of S2P.

Method Full Non-Rare Rare
Early Fusion 37.08 48.05 24.12
Middle Fusion 36.30 47.37 23.23
Late Fusion 37.55 48.84 24.22

Table 3. Comparison of different multi-modal fusion strategies on
Pangea benchmark.

tracted features of 2D and 3D at the early and middle layers
of models respectively. For late fusion, we directly fuse the
logits. We can find that the late fusion which directly fuses
the outputs of 2D and 3D models performs best.

We also conduct a comparison between 2D only, 3D
only, and 2D-3D fusion on Pangea in Suppl. Tab. 4. As
shown, though P2S with 3D only is not very competitive

Method Full Non-Rare Rare
CLIP [58] 28.25 37.87 16.90
P2S (2D) 34.46 45.15 21.84
P2S (3D) 11.57 16.12 6.21
P2S (2D+3D) 37.55 48.84 24.22

Table 4. Results of different modality utilization on Pangea.

by itself, they could still compensate for 2D only and bring
considerable improvement.

9.3. Verb Node Encoding and Alignment in P2S

Entailment loss. Pangea faces a partial-label learning prob-
lem, where a few uncertain labels should have been anno-
tated as True. The entailment loss, which enforces partial
order relationships, adds more constraints than the classi-
fication loss. Thus, the entailment loss is only applied to
positive samples to avoid over-constraints on uncertain la-
bels. We apply an additional ablation study, where the en-
tailment loss has an additional item for negative samples,
following Eq. 32 from [11]. We find a slight performance
degradation from 34.25 mAP to 33.93 mAP (with γ = 0.1)
on the Pangea test set.

Semantic encoding flexibility. For semantic encoding,
the input texts of the nodes are fixed, while the node em-



bedding E is not fixed with trainable semantic and geom-
etry encoding. We use TextRank to sample key texts clari-
fying the node semantics better and taking the summarized
text as the text encoder input, to include abundant infor-
mation for semantic encoding. To further explore seman-
tic encoding flexibility, we conduct two additional experi-
ments compared with P2S (34.01 mAP) on the Pangea test
set: 1) Augmentation via sampling node descriptions. In
training, a few randomly sampled sentences (up to 77 to-
kenized symbols) from the node descriptions are input. In
inference, the fixed summarized text is input. The perfor-
mance degrades to 32.43 mAP, possibly since the text bias
from unrelated words in node descriptions: e.g., “I put the
book on the table”, “book” and “table” bring bias. 2) Use
pretrained language vectors. Each sentence is encoded via
another pretrained CLIP text encoder, then the encoded fea-
tures are fed into our text encoder as tokens. Thus, our text
encoder receives various sentences as input. The strategy
performs comparably (33.96 mAP) with the original one.
The possible reason is that there may be a trade-off between
the encoded text length and learning difficulty. In the fu-
ture, given more advanced LLMs to fully utilize the diverse
semantic information of verb nodes in our database, we be-
lieve things may be different and will further stimulate the
potential of our work.

10. More Discussions
In this section, we give some discussions about our system,
some possible applications, and future studies based on our
Pangea and structured semantic space.

(1) Firstly, we discuss more possible future applications
of our system as follows:

New Emergent and Very Rare Actions. Interestingly,
we are creating new actions every day, e.g., new actions
such as play VR games, telesurgery given the
new inventions like VR player, telesurgery machine. These
new emergent actions may have very limited visual and
text data. Given our structured semantic space, we can
directly align new actions to their related verb nodes ef-
ficiently. Then, we can easily find out the related/similar
actions from the previous action database robustly instead
of teaching machines a new action from scratch. The need
for data collection would be largely reduced. Moreover, it
could alleviate the difficulty of incremental learning. Fur-
thermore, sometimes it is very hard to collect data for very
rare actions (e.g., put out fire), but we can get data
easily from its parent, grandparent, or sibling nodes to help
us gather its semantics. In inference, different levels of pre-
dictions also help because we can enforce their geometry
relation consistency to get more robust results.

Customized Finetuning for Downstream Bench-
marks. We can also customize the pretrain set for each
downstream dataset. For example, for AVA, its classes are

related to n nodes in the tree. We can only collect the sam-
ples related to these n nodes in our Pangea and their closely
related neighbors to build a customized and more powerful
pretrain or train set for AVA.

Data Usage and Sharing. Given our Pangea, it is easy
to add new action data in pretraining or finetuning via the
one-time verb node-class alignment. This provides a new
solution for future applications to connect the data own-
ers of different domains and fields. In the future, it is also
promising to marry Pangea and Federated learning to study
data sharing and security. Thus, we can build an action data
platform to share and fully use data and evaluate the contri-
butions of different data providers and annotators.

Training Considering Different Verb Tree Levels. An-
other possible application is that we can pretrain a model
with high-level verb node labels only and then finetune it
with finer-grained verb node labels. This follows the learn-
ing paradigm from abstract concepts to specific concepts.
We leave this to future work.

Joint Learning of P2S and S2P. A promising applica-
tion of our method is to jointly train P2S and S2P. For ex-
ample, firstly train P2S and get the representative verb node
features and then use it in S2P training. Secondly, we can
generate new 3D human samples with S2P via distribution
sampling. Next, these new 3D human samples can be input
into P2S as pseudo samples. During the process, we can
gradually add new data with labels to tune two models. This
design may construct a loop to connect the bottom-up and
top-down models and may show an interesting property. It
lays a foundation for a better understanding of the relation-
ship between human geometry and behavioral semantics.

Hyperbolic Embedding. Besides the geometry infor-
mation encoding, the hyperbolic latent space also acts as an
interpretable indicator to represent the action semantics
and their change in images and videos, which is more than
the performance gains. We think this would be vital for fu-
ture general and interpretable action recognition studies.

Compositional Complexity. Human actions have com-
positional complexity at the human part level. On one hand,
we can composite two actions such as eat and walk easily
via human body parts control in 3D action generation. On
the other hand, this compositionality also brings challenges.
Sometimes the label of a sample only reflects the action se-
mantics carried by human parts, e.g., hold by hands, kick
by feet. This phenomenon was studied by HAKE [32, 33]
before. Given our structured action semantic space, we may
be able to connect human body part states with our verb tree
nodes to find out which nodes represent the part-level action
semantics and which nodes carry the whole body semantics.

(2) Next, we discuss the design choices of our system.
3D Human. In our system, we use multi-modal inputs,

i.e., 2D image/video and 3D human point cloud from SMPL
mesh. Because we believe though 2D data carries abundant



information about human actions, 3D human carries rela-
tively more geometric information about human bodies. In
our tests, we also find that they are complementary to each
other. In the future, we believe that 3D action understand-
ing will be a more and more important direction. More-
over, 3D action/motion generation has attracted more and
more attention recently too. Currently, we do not use the
face and hand detection and reconstruction of 3D humans
for simplicity. We can use a more advanced but also heav-
ier whole body detection and 3D reconstruction model such
as SMPLify-X [51], to pursue better performance on face-
hands related actions such as eat, talk, grasp, etc.
We leave this to future work.

Difference between CLIP-like Models and Ours. Ac-
tion understanding has a long story but the semantic space
is usually defined without guidance, e.g., selecting action
classes according to the research interests or application re-
quirements. Thus, different datasets cannot be directly used
by other domains due to the action class setting divergence
and semantic gap. This inhibits the development of general
and open-action understanding. Recently, CLIP [58] is pro-
posed to utilize the flexible language prompt to encode the
class labels, being able to bypass the class setting to achieve
open-vocabulary training. But action semantics have their
unique property overlooked by the intuitive visual-language
alignment. In detail, verbs usually have many senses under
different contexts and scenes. Moreover, verb taxonomy
is hierarchical, and different datasets usually adopt verbs
in different granularities making the direct visual-language
alignment difficult to capture the subtle semantics of ac-
tions. Directly using the label texts without any guidance is
inefficient and makes it hard to scale for future large-scale
applications. Recent works also find that CLIP-style works
usually perform not as open as we thought since the con-
fusion of competing text features [60]. In our experiments,
we also find that the ambiguity and complexity of action
verbs and the obvious multi-label property of active per-
sons hinder the effectiveness of CLIP a lot. In contrast, our
structured semantic space design is explicit, well-designed
to alleviate ambiguity, and relates the similar verbs thanks
to the linguistic knowledge from VerbNet. Thus, our model
performs much better than the vanilla CLIP design on large-
scale action learning tasks while showing great generaliza-
tion ability, openness, and extensibility [60]. Besides the
unity and broad coverage, an extra benefit of our semantic
space is that, though all the data would be placed in our verb
tree, different users or researchers can only care about a part
of the tree and do not need to process all the data of all the
nodes while keeping the semantic structure knowledge.

Weakly-Supervised Learning. In our Pangea, due to
the costly full annotation of the whole verb tree for all sam-
ples, we adopt a weakly supervised way to train the models.
In the future, we can annotate more verb nodes for more ac-

tion classes from existing datasets, supplement more node
labels for the existing samples, or utilize the self-supervised
learning method designed for the typical positive unlabeled
setting (PU, only some of the positive samples have la-
bels) [1] to further advance our weakly-supervised system.

Long-tailed Distribution. Though we collect a lot of
data in Pangea, the distribution is still long-tailed due to
the natural data distribution. However, in the future, the
community can easily collect data for the rare nodes and
train a more versatile model covering more nodes, and study
more on how to generate better pseudo labels according to
the language structure knowledge.
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for learning hierarchical representations. NIPS, 2017. 1

[48] Juan Carlos Niebles, Chih-Wei Chen, and Li Fei-Fei. Mod-
eling temporal structure of decomposable motion segments
for activity classification. In ECCV, 2010. 4

[49] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpa-
nis, and Kostas Daniilidis. Coarse-to-fine volumetric pre-
diction for single-image 3d human pose. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 7025–7034, 2017. 1

[50] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In CVPR, 2019. 1, 7, 11

[51] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In CVPR, 2019. 14

[52] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In CVPR, 2019. 1

[53] Mathis Petrovich, Michael J. Black, and Gül Varol. Action-
conditioned 3D human motion synthesis with transformer
VAE. In ICCV, 2021. 1, 2

[54] Mathis Petrovich, Michael J. Black, and Gül Varol. TEMOS:
Generating diverse human motions from textual descriptions.
In ECCV, 2022. 1, 2

[55] Matthias Plappert, Christian Mandery, and Tamim Asfour.
The KIT motion-language dataset. Big Data, 2016. 2

[56] Abhinanda R. Punnakkal, Arjun Chandrasekaran, Nikos
Athanasiou, Alejandra Quiros-Ramirez, and Michael J.
Black. BABEL: Bodies, action and behavior with english
labels. In CVPR, 2021. 2, 4, 7, 9

[57] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. NIPS, 2017. 7, 9, 11

[58] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 1, 2, 8, 12, 14

[59] Nishant Rai, Haofeng Chen, Jingwei Ji, Rishi Desai, Kazuki
Kozuka, Shun Ishizaka, Ehsan Adeli, and Juan Carlos
Niebles. Home action genome: Cooperative compositional
action understanding. In CVPR, 2021. 4

[60] Shuhuai Ren, Lei Li, Xuancheng Ren, Guangxiang Zhao,
and Xu Sun. Rethinking the openness of clip. arXiv preprint
arXiv:2206.01986, 2022. 14

[61] Mohammad Amin Sadeghi and Ali Farhadi. Recognition us-
ing visual phrases. In CVPR, 2011. 4

[62] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.
Ntu rgb+ d: A large scale dataset for 3d human activity anal-
ysis. In CVPR, 2016. 4

[63] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In ECCV, 2016. 4, 7

[64] Gunnar A Sigurdsson, Abhinav Gupta, Cordelia Schmid, Ali
Farhadi, and Karteek Alahari. Actor and observer: Joint
modeling of first and third-person videos. In CVPR, 2018.
4, 7

[65] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guil-
laume Couairon, Wojciech Galuba, Marcus Rohrbach, and
Douwe Kiela. Flava: A foundational language and vision
alignment model. In CVPR, 2022. 1

[66] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 4

[67] Xiao Sun, Jiaxiang Shang, Shuang Liang, and Yichen Wei.
Compositional human pose regression. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2602–2611, 2017. 1

[68] Yu Sun, Qian Bao, Wu Liu, Yili Fu, Black Michael J., and
Tao Mei. Monocular, one-stage, regression of multiple 3d
people. In ICCV, 2021. 1, 2, 3, 9, 11

[69] Dı́dac Surı́s, Ruoshi Liu, and Carl Vondrick. Learning the
predictability of the future. In CVPR, 2021. 1

[70] Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano,
and Daniel Cohen-Or. Motionclip: Exposing human motion
generation to clip space. arXiv preprint arXiv:2203.08063,
2022. 1, 2

[71] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen
Ganea. Poincar\’e glove: Hyperbolic word embeddings.
arXiv preprint arXiv:1810.06546, 2018. 1

[72] Mu-Ruei Tseng, Abhishek Gupta, Chi-Keung Tang, and Yu-
Wing Tai. Haa4d: Few-shot human atomic action recogni-
tion via 3d spatio-temporal skeletal alignment, 2022. 4, 7,
9

[73] Mengmeng Wang, Jiazheng Xing, and Yong Liu. Actionclip:
A new paradigm for video action recognition. arXiv preprint
arXiv:2109.08472, 2021. 1

[74] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia
Tsvetkov, and Yuan Cao. Simvlm: Simple visual language
model pretraining with weak supervision. arXiv preprint
arXiv:2108.10904, 2021. 1

[75] Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan,
Jonathan T. Barron, and Ira Kemelmacher-Shlizerman. Hu-
manNeRF: Free-viewpoint rendering of moving people from
monocular video. In CVPR, 2022. 1

[76] Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin,
Leonidas Guibas, and Li Fei-Fei. Human action recognition
by learning bases of action attributes and parts. In ICCV,
2011. 4

[77] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang,



Boxin Li, Chunyuan Li, et al. Florence: A new
foundation model for computer vision. arXiv preprint
arXiv:2111.11432, 2021. 1

[78] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondif-
fuse: Text-driven human motion generation with diffusion
model. arXiv preprint arXiv:2208.15001, 2022. 1, 11

[79] Weiyu Zhang, Menglong Zhu, and Konstantinos G Derpa-
nis. From actemes to action: A strongly-supervised repre-
sentation for detailed action understanding. In ICCV, 2013.
4

[80] Hang Zhao, Zhicheng Yan, Lorenzo Torresani, and Antonio
Torralba. Hacs: Human action clips and segments dataset
for recognition and temporal localization. arXiv preprint
arXiv:1712.09374, 2019. 4


	. Supplementary Related Works
	. Hyperbolic Representation
	. Visual-Language Learning
	. 3D Human Representation
	. 3D Action Generation

	. Details of Pangea Database
	. Data Curation
	. 3D Human Body Annotation Details
	. More Statistics of Pangea
	. Justifications of Database Design Choices
	. Semantic Distribution of Pangea
	. Data License/Address

	. Details of P2S
	. Label Augmentation Details
	. Lorentz Model for Verb Hierarchy

	. Details of S2P
	. Datasets Details in Experiments
	. Details of Image/Video Transfer Learning
	. Transfer Learning Stages
	. Training P2S
	. Video Temporal Encoding
	. HICO
	. HAA
	. HMDB51
	. Kinetics-400

	. Details of 3D Transfer Learning
	. BABEL
	. HAA4D

	. Additional Results of P2S and S2P
	. Action Recognition with P2S
	. P2S Consistency Analysis
	. 3D Motion Generation with S2P

	. Additional Ablation Studies
	. 3D Representation in P2S
	. 2D-3D Fusion in P2S
	. Verb Node Encoding and Alignment in P2S

	. More Discussions

