
Supplementary Materials for From Pixels to Graphs: Open-Vocabulary Scene
Graph Generation with Vision-Language Models

A. More Experiment Configurations

Datasets and tasks We evaluate our method on both SGG
task and downstream VL-tasks. For SGG task, we use two
large-scale SGG benchmarks: Panoptic Scene Graph Gen-
eration (PSG) [9], Visual Genome (VG) [3]. We mainly
adopt the data splits from the previous work [5, 9, 11]. For
Visual Genome [3] dataset, we take the same split proto-
col as [8, 11] where 62,723 images are used for training,
26,446 for test, and 5,000 images sampled from the training
set for validation. The most frequent 150 object categories
and 50 predicates are adopted for evaluation. The Panop-
tic Scene Graph Generation [9] has 4,4967 images are used
for training, 1,000 for test, and 3,000 images sampled from
the training set for validation. There 133 object categories
and 56 predicates categories in total. We use it bound box
annotation for SGG task rather than segmentation masks.

For the open-vocabulary predicate SGG settings, we ran-
domly select 30% predicate categories as novel class. For
VL tasks, we inspect our model on VL-task which poten-
tially need the visual scene representation, such as visual
grounding on RefCOCO/+/g [7, 10], visual question an-
swering on GQA [2], and image captioning on COCO im-
age caption [1].

Implementation Details We initialize our PGSG by us-
ing the BLIP [4] model with ViT-B/16 as the visual back-
bone and BERTbase as the text decoder. For scene graph
training process, we use the image size of 384 times 384, an
AdamW [6] optimizer with lr = 1e-5, weight decay of 0.02
with a cosine scheduler.We increase the learning rate of po-
sition adaptors to 1e-4 for faster convergence. We train our
model on 4 A100 GPUs with 50 epoch. For downstream
tasks fine-tuning, we following the training setup of BLIP
[4]. We use the image encoder and text decoder of PGSG
model, and the text encoder and word embedding remain
the same as in the pre-trained BLIP model. During the scene
graph sequence generation, we generate M=32 number of
sequences which length is L=24. For category amplifier βi,
we set this hyper-parameter as 5.0 for entity categories and
1.0 for predicate classification.

B M Zs Trp. Standard SGG

mR50 R50 wmAP score wtdR@50/100 phr rel

R101
RelDN - 39.7 72.1 28.7 29.1 38.6
HOTR - 36.8 52.6 21.5 19.4 26.8
SGTR - 38.6 59.1 36.9 38.7 42.8

ViT-B* SGTR 19.4/31.6 30.5 52.6 28.0 22.7 30.8
PGSG 23.1/38.6 40.7 62.0 27.8 19.7 28.7

Table 1. The close-vocabulary SG-Det performance on Open-
Image V6.

Prompt
Open Vocab SGG ZS Trp.Novel+Base Novel

mR@50/100 R@50/100 mR@50/100 R@50/100

A 8.2/10.5 14.5/16.4 2.3/7.0 3.6/6.4
B 9.3/11.7 17.7/20.4 3.7/8.6 4.4/7.6
C 9.1/10.1 16.3/19.4 4.1/9.0 4.1/6.6

Table 2. Ablation study on different prompt for SGG task on
PSG dataset. A: ”A visual scene of: ”; B: ”Describe the image by
relationships:”; C: ”A picture of: ”

B. More Experimental Results

In this section, we propose mre Experimental results, in-
cludes quantitative and quantitative analysis of our method.

C. Quantitative Results

C.1. Close-vocabulary SGG on OpenImage V6

In Tab. 1, we present the close-vocabulary SG-Det perfor-
mance on OpenImage V6 across various visual backbones
and zero-shot triplet (Zs Trp.) scenarios. With the same
backbone as BLIP ViT-B, our PGSG achieves compara-
ble performance with baseline SGTR in a standard close-
vocabulary setting and reasonable performance with the
previous one-stage SGG method, which has a larger in-
put resolution ResNet-101 backbone. For compositional
generalization setting, zero-shot triplet SGG, our method
achieves a remarkable 7.0 improvement over the SGTR
baseline.
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Describe the image by visual relationships: 
bus [obj] on [rel] road [obj] , tree [obj] beside [rel] building [obj] grass [obj] 
attached to [rel] pavement [obj] [SEP]
sky [obj] over [rel] building [obj] car [obj] driving on [rel] grass [obj] person table 
[obj] beside [rel] pavement [obj] [SEP]
car [obj] parked on [rel] road [obj] bus [obj] in front of [rel] person [obj] , sky [obj] 
over [rel] tree [obj] [SEP] 
person [obj] walking on [rel] grass [obj] sky [obj] over [rel] building [obj] bus [obj] 
driving on [rel] road [obj] car [obj] beside [rel] pavement [obj] , tree [obj] in front of 
[rel] banner [obj] [SEP] 
car [obj] on [rel] road [obj] grass [obj] attached to [rel] pavement [obj] sky [obj] over 
[rel] tree [obj] , person [obj] beside [rel] bus [obj] [SEP] 
bus [obj] on [rel] road [obj] , person [obj] beside [rel] car [obj] , grass [obj] attached 
to [rel] tree [obj] [SEP] 
sky [obj] over [rel] tree [obj] , bus [obj] driving on [rel] road [obj] , person [obj] 
walking on [rel] pavement [obj] [SEP] 

Describe the image by visual relationships: 
sky [obj] over [rel] airplane [obj], grass [obj] beside [rel] road [obj] and road [obj] 
attached to [rel] pavement [obj] [SEP] building [obj] on [rel] road, airplane [obj] parked 
on [rel] pavement [obj] and tree [obj] beside [rel] grass [obj] [SEP]
sky [obj] over [rel] tree [obj], airplane [obj] on [rel] road [obj] and fence [obj] beside 
[rel] grass [obj] [SEP]
tree [obj] beside [rel] fence [obj] and airplane [obj] on [rel] grass [obj], sky [obj] over 
[rel] road [obj] [SEP] 
pavement [obj] beside [rel] grass [obj], sky [obj] over [rel] tree [obj] and airplane [obj] 
in front of [rel] house [obj] [SEP]
road [obj] attached to [rel] grass [obj] and airplane [obj] parked on [rel] pavement [obj] 
and sky [obj] over [rel] tree [obj] [SEP] sky [obj] over [rel] road [obj] and airplane [obj] 
parked on [rel] grass [obj], tree [obj] beside [rel] house [obj] [SEP] 
road [obj] attached to [rel] grass [obj] and airplane [obj] parked on [rel] road [obj] and 
sky [obj] over [rel] tree [obj] [SEP] airplane [obj] on [rel] grass [obj], sky [obj] over 
[rel] tree [obj] and road [obj] attached to [rel] pavement [obj] [SEP] 

Figure 1. The visualization of scene graph sequence prediction of PGSG.

C.2. Sensitivity of different Prefix Prompts

We also study the different prompt structures for generating
the scene graph, as shown in Tab. 2. We experiment with
the PGSG framework with different prefix instructions for
the scene graph generation task. The results show that more
specific instructions yield a slight improvement in perfor-
mance, which indicates that our method has robustness for
different instructions.

C.3. Time Complexity Comparison With Previous
Method

Despite potential inference time increases due to the self-
regression generation with a large model, we have ef-
fectively mitigated this issue by reducing output size.
We achieve a boost in inference speed reasonable open-
vocabulary SGG performance, in the Tab. 4 of the main pa-
per. We also compare the inference times with other SGG
methods, as shown in Tab. 3. The results demonstrate that
PGSG attains comparable time efficiency while maintaining
its competitive open-vocabulary SGG performance.

C.4. Time Complexity

Despite potential inference time increases due to the self-
regression generation with a large model, we have ef-
fectively mitigated this issue by reducing output size.
We achieve a boost in inference speed reasonable open-
vocabulary SGG performance, in the Tab. 4 of the main pa-

M VCTree GPS-Net BGNN PGSG PGSG*

Time 1.69 1.02 1.32 4.8 1.8

Table 3. the inference speed (Second per image) comparison
with previous two-stage SGG methods

per. We also compare the inference times with other SGG
methods, as shown in Tab. 3. The results demonstrate that
PGSG attains comparable time efficiency while maintaining
its competitive open-vocabulary SGG performance.

D. Qualitative Results

We also present the qualitative analysis for the PGSG
framework to take a close look at the sequence generation-
based SGG framework. In Fig. 1, we show a few exam-
ples of generated sequences from our validation set of the
PSG dataset. At inference time, the VLM generates scene
graph sequences with entity-aware tokens as indicators by
using several short token sequences with nucleus sampling,
which are able to obtain diverse visual relations. The fol-
lowing entity grounding module extracts the boxes for each
entity within the sequences.
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