GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding

Supplementary Material

7.1. Implementation of our Transformers

We provide a simple and efficient pytorch pseudo-code to implement the attention operations in the field-aggregation, ray-aggregation transformer blocks in Alg. 1, 2. We use ray features to generate attention maps A_{field} and A_{ray} , and reuse them to construct semantic-embedding field as well as semantic features rendering.

Algorithm 1: Field-Aggregation Transformer Input: $X_0 \rightarrow \text{coordinate aligned features} (N_{\text{rays}}, N_{\text{pts}}, D_{rgb})$ $X_{rgb} \rightarrow \text{epipolar view Ray feats } (N_{rays}, N_{pts}, N_{views}, D_{rgb})$ $X_{sem} \rightarrow \text{epipolar view Sem feats} (N_{rays}, N_{pts}, N_{views}, D_{sem})$ $\Delta d \rightarrow$ relative directions $(N_{rays}, N_{pts}, N_{views}, 3)$ **Network:** $f_Q, f_K, f_V, f_P, f_A, f_{rgb} \rightarrow \text{MLP}$ layers Output: $S_{rgb}^{3D}, S_{sem}^{3D}$ Forward: Red for semantic-embedding field aggregation $\mathbf{1} \ \mathbf{Q} = f_Q \left(\mathbf{X}_0 \right), \mathbf{K} = f_K \left(\mathbf{X}_{rgb} \right), \mathbf{V} = f_V \left(\mathbf{X}_{rgb} \right)$ 2 $P_{field} = f_P(\Delta d)$ 3 $A_{field} = K - Q[:, : None, :] + P$ 4 $A_{field} = \operatorname{softmax}(A, \dim = -2)$ 5 $A'_{field} = A_{field} \cdot \text{repeat_interleave}(4)$ 6 $\mathbf{P}'_{field} = \mathbf{P} \cdot \text{repeat_interleave}(4)$ 7 $\overline{\boldsymbol{S}_{rgb}^{3D}} = ((\boldsymbol{V} + \boldsymbol{P}) \cdot \boldsymbol{A}) \cdot \operatorname{sum}(\dim = 2)$ 8 $S_{rgb}^{3D} = f_{rgb}(S_{rgb}^{3D})$

9 $S_{sem}^{3D} = ((X_{sem} + P'_{field}) \cdot A'_{field}) \cdot \operatorname{sum}(\dim = 2)$

7.2. Reconstruction results in instance setting

During the novel view instance segmentation task, we evaluate our reconstruction results and compare them with SOTA method DM-NeRF[38]. As shown in Table 5, our approach surpasses DM-NeRF in terms of SSIM and LPIPS metrics by 0.02% and 0.065%, respectively. It demonstrates that contextual information from semantic features can enhance the geometry reconstruction in our jointly optimized field and rendering framework.

7.3. Few-step Finetuning Comparison

Tab. 6 presents a comparison of different models, showcasing their mIoU and finetuning times on the ScanNet [9] dataset, along with the AP75 metric in Replica [33]. We observe that by finetuning with limited time, our model is able to achieve a better perception accuracy than a welltrained per-scene optimized method, such as 3.45% in

Algorithm 2: Ray-Aggregation Transformer

Input:

$$\begin{split} & \overline{\boldsymbol{X}_{0}^{rgb}} \rightarrow \text{coordinate aligned rgb features } \left(N_{\text{rays}}, N_{\text{pts}}, D_{rgb}\right) \\ & \overline{\boldsymbol{X}_{0}^{sem}} \rightarrow \text{coordinate aligned sem features } \left(N_{\text{rays}}, N_{\text{pts}}, D_{sem}\right) \\ & \overline{\boldsymbol{x}} \rightarrow \text{point coordinates (after PE) } \left(N_{\text{rays}}, N_{\text{pts}}, D_{rgb}\right) \\ & d \rightarrow \text{target view direction (after PE) } \left(N_{\text{rays}}, N_{\text{pts}}, D_{rgb}\right) \\ & \text{Network: } f_Q, f_K, f_V, f_P, f_A, f_{rgb}, f_{sem} \rightarrow \text{MLP layers} \\ & \text{Output: } \boldsymbol{S}_{rgb}^{2D}, \boldsymbol{S}_{sem}^{2D} \end{split}$$

Forward: Red for semantic-embedding field aggregation

$$\begin{array}{l} \mathbf{X}_{0}^{rgb} = f_{P}(\operatorname{concat}(\mathbf{X}_{0}^{rgb}, d, x)) \\ \mathbf{2} \ \mathbf{Q} = f_{Q}\left(\mathbf{X}_{0}^{rgb}\right), \mathbf{K} = f_{K}\left(\mathbf{X}_{0}^{rgb}\right), \mathbf{V} = f_{V}\left(\mathbf{X}_{0}^{rgb}\right) \\ \mathbf{3} \ \mathbf{A}_{ray} = \operatorname{matmul}\left(\mathbf{Q}, \mathbf{K}^{T}\right) / \sqrt{D} \\ \mathbf{4} \ \mathbf{A}_{ray} = \operatorname{softmax}(\mathbf{A}_{ray}, \dim = -1) \\ \mathbf{5} \ \mathbf{A}_{ray}^{r} = \mathbf{A}_{ray} \cdot \operatorname{repeat_interleave}(4) \\ \mathbf{6} \ \mathbf{S}_{rgb}^{2D} = \operatorname{matmul}(\mathbf{V}, \mathbf{A}_{ray}) \\ \mathbf{7} \ \mathbf{S}_{rgb}^{2D} = f_{rgb}(\mathbf{S}_{rgb}^{2D}) \\ \mathbf{8} \ \mathbf{S}_{sem}^{2D} = \operatorname{matmul}(\mathbf{X}_{0}^{sem}, \mathbf{A}_{ray}') \end{array}$$

Table 5. Quantitative results of reconstruction task in Replica[33] during instance segmentation setting.

Scene	PSNR↑	DM-NeRF SSIM↑	LPIPS↓	PSNR↑	Ours SSIM↑	LPIPS↓
Office_0	40.66	0.972	0.07	39.25	0.984	0.027
Office_2	36.98	0.964	0.115	36.01	0.974	0.042
Office_3	35.34	0.955	0.078	36.02	0.982	0.027
Office_4	32.95	0.921	0.172	32.75	0.94	0.085
Room_0	34.97	0.94	0.127	34.29	0.972	0.049
Room_1	34.72	0.931	0.134	36.45	0.968	0.043
Room_2	37.32	0.963	0.115	34.75	0.960	0.085
Average	36.13	0.949	0.116	35.64 _{0.49↓}	^{0.969} 0.02↑	$0.051_{0.065}$

mIoU with Semantic-NeRF [52] and 3.7% in AP75 with DM-NeRF [38]. Specifically, we observe that our method surpasses Semantic-Ray, requiring only half as many fine-tuning steps, and improves the mIoU by 0.74%, which further demonstrates that our semantic embedding field with more discrimination successfully improves the generalized ability.

We further evaluate the above experiments in instance segmentation setting, shown in the bottom column in Tab. 6. Not surprising, compared with SOTA method DM-NeRF[38], we achieve better performance with only 4k training steps, by 3.7% in AP75.

7.4. Additional Visualization Results

Fig. 9 shows the additional qualitative results of semantic prediction and reconstruction.

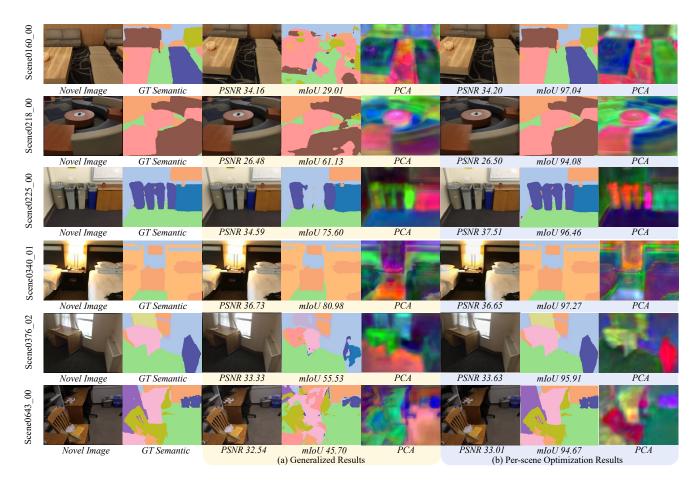


Figure 9. The visualization results in ScanNet[9]. Here we visualize the semantic as well as reconstruction results in both generalized and finetuning settings.

Train Step	Train Time	mIoU/AP75
50k	$\sim 2h$	89.33
5k	$\sim 20 \text{min}$	52.02
5k	\sim 32min	79.23
5k	$\sim 20 { m min}$	92.04
2.5k	$\sim 20 \mathrm{min}$	92.78 _{0.74↑}
200k	$\sim 2h$	81.03
4k	$\sim 30 \text{min}$	84.73 _{3.7↑}
	50k 5k 5k 5k 2.5k 200k	50k ~2h 5k ~20min 5k ~32min 5k ~20min 2.5k ~20min 200k ~2h

Table 6. mIoU and training steps/time on ScanNet [9]. "w/ s" means adding a semantic head on the baseline architectures.