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6. Data Processing
In this section, we introduce the processing steps to generate
the data required by the training of our models.

6.1. Transfer to the Neutral Body

The training of ISP requires the rest garment mesh draped
on the neutral body (β = 0). However, the rest garments in
CLOTH3D [4] are draped on bodies with varying shapes.
To transfer these garments onto the neutral body, we use the
diffused SMPL skinning procedure [47] to make the gar-
ment fit to the neutral body:

  v = v - \frac {1}{N}\sum _{v_n\sim \mathcal {N}(v,\textbf {d})}B_\beta (\phi (v_n)) \; \label {eq:diffuse} ,   






  (14)

where ϕ(vn) computes the closest SMPL body point for vn,
d the distance from v to the body surface, Bβ(·) returns the
shape displacement of SMPL, N is the normal distribution
and N = 1000. While Eq. 14 produces a garment that
fits the neutral body, its surface may be inconsistent with
the original mesh, as illustrated in Fig. 8(b). To address
this, we perform an optimization process using the follow-
ing equation:

  v^* = \argmin _{v} L_{style} + L_{strain} + L_{bend} + L_{col} \; \label {eq:grade} .  


        (15)

Lstrain, Lbend and Lcol are the strain energy, the bending
energy and the collision loss introduced in Eq. 13. Lstyle is
the style preserving loss inspired by [7]

  L_{style} &= \lambda _s L_{shape} + \lambda _e L_{edge} + \lambda _r L_{rl} + \lambda _f L_{fit} \; \label {eq:style} , \\ L_{shape} &= \sum _f ||n_f-n_f^o||_2^2 \; \label {eq:shape} , \\ L_{edge} &= \sum _{e} 1 - cos(e, e^o) \; \label {eq:edge} ,         





 
  





    (18)

where nf and no
f are the normals of face f in the transferred

mesh and the original mesh respectively, and e and eo are
the vectors of the boundary edges. Lrl and Lfit are the
loss terms that enforce relative location preservation and fit
in tight regions as defined in [7].The balancing weights λs,
λe, λr and λf are set to 10, 0.5, 1 and 1, respectively. The
optimization of Eq. 15 produces the result that preserves
the shape and style of the original mesh as illustrated in Fig.
8(c).

6.2. Cutting

We cut the shirt, trousers and skirt using the following rules:

• Shirt: the faces that cross the plane of z = −0.03 are cut,
resulting in 2 surfaces (front, back) for the shirt without
opening as shown in Fig. 3(b) or 3 surfaces (front-left,
front-right, back) for the shirt with opening as shown in
Fig. 9(b).

• Trousers: the faces that cross the plane of x = 0 or the
plane of z = 0.07y + 0.03 are cut, resulting in 4 surfaces
(front-left, front-right, back-left, back-right) as shown in
Fig. 10(b).

• Skirt: the faces that cross the plane of z = 0.03 are
cut, resulting in 2 surfaces (front, back) as shown in Fig.
11(b).

6.3. Flattening

Once the piece of garment is subdivided into meshes with
disk topology, we parameterize them in 2D using as-rigid-
as-possible (ARAP) flattening [33], as implemented in [42].
This method minimizes area distortion and produces real-
istic patterns which can be used for garment fabrication.
Given an initial solution computed with LSCM [27], we
first determine the ideal rigid transformation for each tri-
angle that maps its vertices from 3D to 2D using the Pro-
crustes method [49]. Then, given a mesh of triangles T in
3D and its current 2D parameterization T ′, the ARAP en-
ergy is defined as:

Erigid =
∑
t∈T

∑
e∈t

(ue − ue′)
2 + (ve − ve′)

2

where e is an edge of triangle t ∈ T , e′ is the corresponding
edge in T ′, ue and ve are the lengths of edge e along the
first and second axis in 2D, respectively. We minimize this
energy using a sparse least-squares solver.

Minimizing Erigid naively would be impractical, how-
ever, as the resulting patterns would have arbitrary orien-
tation and lack consistency. Our application requires con-
sistent patterns across the dataset so that ISP can learn to
represent them jointly. To this end, we add further con-
straints in the optimization of T ′ depending on the category
of garment. Specifically:
• In trousers, vertices along the waist line are constrained

to have y = 0, and the vertex in the center is set to x = 0.
• In upper-body garments, if there is an opening in the cen-

ter, the vertices on the central boundary are constrained to
x = 0.04 for the right side of the garment, and x = −0.04
on the left. Additionally, for each vertex V = (x, y, z) on
the upper boundary of a sleeve, we set its 2D position to
v = (x−0.1, y) if it is on the left side, or v = (x+0.1, y)
on the right side.
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Figure 8. Transfer to the neutral body. (a) The original shirt on β-shape body. (b) The shirt transferred by Eq. 14 on the neural body. (c)
The shirt refined by Eq. 15.
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Figure 9. The cutting and flattening for open shirt. (a) The
original mesh. (b) The cut surfaces. (c) The flattened panels.
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Figure 10. The cutting and flattening for trousers. (a) The orig-
inal mesh. (b) The cut surfaces. (c) The flattened panels.

• In skirts, we observed that no additional constraint was
necessary to produce consistent patterns, other than align-
ing them with a rotation and a transformation.
For trousers and shirt openings, we combine left and

right side patterns with a constant translation between them
to form the front and the back panels. We have found this
setting to produce patterns closest to the ones commonly
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Figure 11. The cutting and flattening for skirt. (a) The original
mesh. (b) The cut surfaces. (c) The flattened panels.

used in the garment fabrication industry. The resulting pat-
terns for each category are illustrated in Figures 9(c), 10(c)
and 11(c).

7. Comparison with ECON

In Fig. 12, we show the comparison between the reconstruc-
tion of our method and ECON [53]. Our method achieves
more realistic reconstructions, which is particularly evi-
dent in the second example. Thanks to the designed fitting
process that utilizes the prior captured by the deformation
model and the physics-based loss, we are able to recover
plausible deformations that extend to both the visible and
occluded portions of the clothing. Furthermore, our recon-
structions yield separated garment layers that are animat-
able, whereas ECON does not offer this capability.

8. Recovered Patterns

In Fig. 13, we show a comparison between the occupancy
maps estimated by the deformation model D and those re-
covered through the optimization process described by Eq.
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Figure 12. Comparison with ECON [53]. Our method can recover realistic separated open surfaces for garments, while ECON generates
closed meshes that encompass both the garments and the body.
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Figure 13. (a) The input image (top) and the corresponding rest
mesh recovered by ISP (bottom). (b) The occupancy maps pre-
dicted by the deformation model D. (c) The occupancy maps re-
covered by the optimization of the latent code of ISP (Eq. 9).

9. While the estimated occupancy maps may contain noise,
we are able to recover the garment latent code from them
with ISP, producing maps that best matches the estimation.

9. Hyperparameters
In this section, we introduce the hyperparameters for the
training and the optimization.
• For the training of the deformation network D, we set
λ = 0.05 in Eq. 8.

• For the optimization of Eq. 9, we set λz = 0.04 and run
1000 iterations with the Adam optimizer and the learning
rate of 10−3.

• For the optimization of Eq. 10 with respect to D, we set
λC = 0.2, λn = 1, λp = 1, and run 300 iterations with
the Adam optimizer and the learning rate of 10−4. For the
optimization with respect to the coordinates of the gar-
ment mesh vertices, we run 400 iterations with the same
hyperparameters.

• The resolution of the UV maps, the occupancy maps and
the position maps is 128× 128.

• For each garment category, i.e. shirts, skirts and trousers,
we train one separate set of ISP and the deformation
model D.

10. Discussion
Since our method relies on the estimation of SMPL body
parameters and garment normals, inaccuracies in these es-
timations can lead to incorrect garment reconstructions. As
illustrated in Fig. 14, a failure case arises from the erro-
neous estimation of SMPL parameters, where the recon-
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Figure 14. (a) The self-interpenetration of the estimated SMPL
body leads to (b) the intersection between the reconstructed skirt
and the hand of the body.
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Figure 15. (a) The inaccurate normal estimation of the skirt leads
to (b) the artifacts on the reconstructed surface.

structed skirt intersects with the hand due to the interpen-
etration of the body’s hand and leg. In Fig. 15, we show
the result with incorrect normal estimation. The garment’s
texture was misclassified as the shadow by the algorithm of
[53], resulting in surface artifacts. Due to the normal consis-
tency loss in the optimization of Eq. 10, our reconstruction
retains this artifact.


