GenZlI: Zero-Shot 3D Human-Scene Interaction Generation
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A. More Results

Generation Variations. In Fig. 7, we show different syn-
thesized 3D interaction variations, given the same 3D scene,
text prompt, and location specification input. By using a dif-
ferent collection of multi-view interaction hypotheses, pro-
duced by latent diffusion inpainting, our approach can gen-
erate various plausible 3D human-scene interactions from
the same input.

Multi-view Human Inpaintings. In Fig. 8, we show the
multi-view human inpaintings used in our robust 3D lift-
ing optimization. In the initial synthesis stage, the images
are obtained with our dynamically-masked inpainting. In
the refinement stage, the images are generated with the sil-
houette masks of the posed 3D human from the initial stage.
The optimized view consistency score is shown next to each
inpainted image (as a blue bar). It is observed that through
iterative refinement, the quality of both the multi-view hu-
man inpaintings and the synthesized 3D interactions gradu-
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“relaxing on a bench, bending

zero-shot approach outperforms HUMANISE, a recent supervised
method generating human motions in 3D scenes from text inputs.

ally improves.

Analysis of Dynamically Generated Masks. We find that
for each interaction prompt, our dynamic masking yields
on average 13.4 out of 16 rendered views with inpainted
humans detected by our 2D pose estimator (Sec. 3.3). This
greatly surpasses the minimum 3-views in Eq. 3 of robust
3D lifting, providing strong evidence for the high quality of
the dynamically generated masks.

More Comparisons on the Sketchfab Dataset. We ad-
ditionally compare with HUMANISE [3], which generates
human motions in 3D scenes from text inputs. As HU-
MANISE outputs sequences, we select the frame with the
best CLIP score (Sec. 4) to the input prompt for compar-
ison. Tab. 3 and Fig. 9 show that our approach outper-
forms HUMANISE (especially in the more reliable CLIP
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Figure 7. Our approach can generate different plausible human interactions in a 3D scene, from (1) to (4), given the same text prompt and

location specification.
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R sl s A
ol e

B e o B b B 8
i ol |

3D Interaction

™|

[TE]S

Figure 8. Multi-view human inpaintings used in our robust 3D lifting optimization. (1) Initial synthesis stage: images resulting from
dynamically-masked inpainting; (2) Refinement stage: inpaintings with the silhouette masks of the posed 3D human from the initial stage.
Without refinement, the person floats above the ground (top), or has self-penetration (bottom). The blue bar next to each inpainted image

represents its optimized view consistency score.
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“relaxing on a bench, bending knees”

Figure 9. Qualitative comparison with HUMANISE on Sketchfab.
Our zero-shot approach generates more realistic 3D interactions
and generalizes better than the supervised HUMANISE method.

metric), which requires training on indoor interaction data
and struggles to generalize on Sketchfab with more out-of-
distribution objects.

Evaluation on the PROX-S Dataset. We perform further
comparisons on a recent indoor scene dataset PROX-S [4]

for 3D interaction synthesis. PROX-S consists of 12 in-
door scenes with 3D instance segmentations and interaction
annotations in the form of (action, object) pairs. Four of
the scenes are used for testing. The interaction synthesis is
evaluated on about 150 different combinations of action and
object instances in the test set.

To adapt our approach GenZI to PROX-S, we map the
provided interaction labels, e.g., (sit on, sofa), to natural
language descriptions, e.g., “sitting on the sofa”. We use
the bounding box centers of object instances as the approx-
imate 3D location input. We stress that in a general synthe-
sis scenario (e.g., scenes from the Sketchfab dataset), our
approach does not require any 3D scene segmentations.

Several baseline methods focused on indoor 3D inter-
action synthesis are compared, including PiGraph-X [2],
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Algorithm 1 Inpainting with Dynamic Masking

PiGraph-X X 0.2562 3.719 1.019 0.861 0.981
POSA-1 X 0.2594 3.680 1.061 0.974 0.941
COINS X 0.2617 3.685 0.782 0.981 0.969
Ours v 0.2544 3.748 0.869 0.992 0.961

Table 4. Quantitative comparisons on the PROX-S dataset. Our
zero-shot approach achieves comparable performance, compared
to the baselines that learn from the PROX-S training set with 3D
scene segmentations, captured 3D human poses, and interaction
annotations.

POSA-I [1], and COINS [4]. Note that all the baselines
require learning from the PROX-S training set that has 3D
scene segmentations, captured 3D human poses, and inter-
action labellings. In contrast, our approach does not require
any 3D learning or captured 3D interaction data.

Tab. 4 shows the quantitative evaluation of semantic con-
sistency, diversity, and physical plausibility on PROX-S,
and Fig. 10 presents the qualitative comparisons. Our zero-
shot approach achieves competitive synthesis performance,
when compared to the baselines that are specifically trained
on PROX-S. We note that the scenes in PROX-S have noisy,
incomplete 3D geometry and very low-quality texture de-
tails, as shown in Fig. 10, thus their rendered images can be
challenging for latent diffusion to inpaint 2D interaction hy-
potheses. Nevertheless, our approach has the best diversity
entropy and non-collision scores, and can generate plausi-
ble 3D interactions in indoor scenes without relying on any
captured indoor interaction data.

B. Implementation Details

Multi-view Camera Setup. In Sec. 3.2 of the main text,
we create a multi-view representation of the scene context
at the location p by rendering the 3D scene S from £ virtual
cameras looking at p. To determine the camera positions,
we first randomly sample a set of 3D points on the +z hemi-
sphere centered at p with a radius of d = 2.0m, assuming
+2z as the upward direction for the cameras. We then fil-
ter these sampled viewpoints according to the visibility of
p via depth testing. For more robust visibility testing, we
opt to crop a local surface patch of S at p within a radius
of r = 0.15m, and compute the ratio of this patch’s visible
area from each viewpoint, based on which the top-k view-
points are selected.

Dynamic Masking. We summarize our dynamic mask-
ing scheme in Algorithm | using the same notation as in
Sec. 3.2 of the main text. In practice, we use I" = 50 denois-
ing steps in latent diffusion inpainting. We set T, = 25
for updating the mask M,, and keep M, unchanged after
t < Thin to stabilize the inpaintings.

Angle Prior. In Sec. 3.3 of the main text, we use an angle
prior &£ to regularize extreme bending of the body joints

Input: An image I, a text prompt I, token indices h
Output: An inpainted image I
Require: A latent diffusion inpainting model {2
zr ~ N(0,1) a Gaussian noise latent
Mr =0
fort=T7,T—1,---,1do

Zi_ 1, At — Q(Zt, Mt7 I, F, t)

if ¢ > T, then

M, _; < binarize(sum(A[:, h]))

end if
: end for
return z

R A A ol S

— — =
M e e

© e R2%3 represented in the axis-angle form:

EJA: Z |(:)j,a + Z max(s~(:)j7a,0), (7)

J,a€A J,a,s€A

where © 4, denotes the angle of axis a of the j-th joint, and
s denotes a sign (£1). The 21 body joints are divided into
two groups A and A for different angle regularizations in
Eq. (7), where A consists of head, feet, and wrists, and the
rest joints are included in A. More implementation details
are available in our released code.
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Figure 10. Qualitative results on the PROX-S dataset. Our zero-shot approach can synthesize plausible 3D interactions in indoor scenes
without relying on any captured indoor interaction data. In contrast, the baselines PiGraph-X, POSA-I, and COINS all require learning
from the PROX-S training set with 3D scene segmentations, captured 3D human poses, and interaction annotations.
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