# General Point Model Pretraining with Autoencoding and Autoregressive

Supplementary Material

### 6. Implementation Details

## 6.1. Stage 1: Discrete VAE Pre-training

Architecture: Following [63], our discrete VAE (dVAE) consists of a tokenizer and decoder. The tokenizer module encompasses a robust 4-layer DGCNN [53], while the decoder module integrates a 4-layer DGCNN, followed by the FoldingNet [60]. The comprehensive network architecture of our dVAE is meticulously depicted in Table 7, encompassing essential dimensions such as  $D_{in}$  (input feature dimension),  $D_{out}$  (output feature dimension), and  $D_{mid}$  (hidden layer dimension). Moreover,  $N_{out}$  denotes the number of point groups in each layer, and K signifies the number of neighbors involved in the k-Nearest Neighbors (kNN) operation. To further enhance the representation, the FoldingLayer incorporates 2D grids into the input, ultimately generating immersive 3D point clouds.

| Structure       | Module       | $D_{in}$ | $D_{out}$ | K | $N_{out}$ | $D_{mid}$ |
|-----------------|--------------|----------|-----------|---|-----------|-----------|
|                 | Linear       | 384      | 128       | - | -         | -         |
|                 | DGCNN        | 128      | 256       | 4 | 64        | -         |
| dVAE tokonizon  | DGCNN        | 256      | 512       | 4 | 64        | -         |
| d VAE tokenizer | DGCNN        | 512      | 512       | 4 | 64        | -         |
|                 | DGCNN        | 512      | 1024      | 4 | 64        | -         |
|                 | Linear       | 2304     | 8192      | - | -         | -         |
|                 | Linear       | 384      | 128       | - | -         | -         |
|                 | DGCNN        | 128      | 256       | 4 | 64        | -         |
|                 | DGCNN        | 256      | 512       | 4 | 64        | -         |
|                 | DGCNN        | 512      | 512       | 4 | 64        | -         |
| d VAL decoder   | DGCNN        | 512      | 1024      | 4 | 64        | -         |
|                 | Linear       | 2304     | 256       | - | -         | -         |
|                 | MLP          | 256      | 48        | - | -         | 1024      |
|                 | FoldingLayer | 256      | 3         | - | -         | 1024      |

Table 7. Details of our model discrete VAE.

**Hyper-parameters:** We define the learnable vocabulary size as 8192 in our approach, with each individual 'word' represented as a 384-*d* vector. The dVAE's optimal performance heavily relies on two critical hyperparameters:  $\alpha$  for the Kullback-Leibler (KL) loss term and the temperature  $\tau$  for the Gumbel-Softmax distribution. We follow [63], initially set  $\alpha$  to 0 for the first 18 epochs, approximately 10,000 steps, gradually increasing it to 0.1 over the subsequent 180 epochs, roughly 100,000 steps, employing a cosine schedule. Regarding  $\tau$ , we adopt a similar decay strategy as described in [41], progressively reducing it from 1 to 0.0625 throughout the initial 180 epochs with a cosine schedule, comprising around 100,000 steps.

**Experiment Settings:** Table 8 shows the experimental settings for dVAE pre-training in stage 1.

| Config                 | Value          |  |  |
|------------------------|----------------|--|--|
| optimizer              | AdamW [31]     |  |  |
| learning rate          | 5e-4           |  |  |
| weight decay           | 0.05           |  |  |
| learning rate schedule | cosine [30]    |  |  |
| warmingup epochs       | 10             |  |  |
| augmentation           | RandomSampling |  |  |
| batch size             | 600            |  |  |
| number of points       | 1024           |  |  |
| number of groups       | 64             |  |  |
| group size             | 32             |  |  |
| epochs                 | 300            |  |  |
| dataset                | ShapeNet       |  |  |
|                        | —              |  |  |

Table 8. Experiment settings for dVAE pre-training.

### 6.2. Stage 2: GPM Pre-training

| Config                 | Value             |
|------------------------|-------------------|
| optimizer              | AdamW             |
| learning rate          | 5e-4              |
| weight decay           | 0.05              |
| learning rate schedule | cosine            |
| warmingup epochs       | 3                 |
| augmentation           | ScaleAndTranslate |
| batch size             | 448               |
| number of points       | 1024              |
| number of groups       | 64                |
| input length           | 129               |
| group size             | 32                |
| mask ratio             | [0.25, 0.45]      |
| mask method            | rand mask         |
| epochs                 | 300               |
| dataset                | ShapeNet          |
|                        | —                 |

Table 9. Experiment setting for our GPM pre-training.

**Architecture:** Adhering to [63], we adopt the standard Transformer architecture as the backbone of our GPM. It comprises a cascade of Transformer blocks [51], each composed of a multi-head self-attention layer and a FeedForward Network (FFN). Within these two layers, we incorporate LayerNorm (LN) to ensure optimal performance and stability.

**Hyper-parameters:** In our experiments, we configure the transformer architecture with 12 blocks. Each multi-head self-attention layer consists of 6 heads. Additionally, the feature dimension of the transformer layer is set to 384. Following [63], we employ the stochastic depth strategy as proposed in [49], incorporating a dropout rate of 0.1.

**Experiment Settings:** In our study, we divide the input into two parts: PartA and PartB. The sequence length of PartA is 64, and we prepend a **[CLS]** token at the beginning for downstream task fine-tuning. At the beginning of PartB, we insert an **[SOS]** token to indicate the start of the autoregressive process. We use {[SOS],  $p_1, ..., p_{n-1}$ } as PartB and { $p_1, p_2, ..., p_n$ } as the supervision signal for the autoregressive process. Therefore, the total input sequence length is 129. The detailed experiment setup is shown in Table 9.

## 6.3. Downstream Tasks

| Structure           | Module | $D_{in}$ | $D_{out}$ | K | $N_{out}$ | $D_{mid}$ |
|---------------------|--------|----------|-----------|---|-----------|-----------|
| classification head | MLP    | 768      | $N_{cls}$ | - | -         | 256       |
|                     | MLP    | 387      | 384       | - | -         | 1536      |
|                     | DGCNN  | 384      | 512       | 4 | 128       | -         |
|                     | DGCNN  | 512      | 384       | 4 | 128       | -         |
|                     | DGCNN  | 384      | 512       | 4 | 256       | -         |
| segmentation head   | DGCNN  | 512      | 384       | 4 | 256       | -         |
| -                   | DGCNN  | 384      | 512       | 4 | 512       | -         |
|                     | DGCNN  | 512      | 384       | 4 | 512       | -         |
|                     | DGCNN  | 384      | 512       | 4 | 2048      | -         |
|                     | DGCNN  | 512      | 384       | 4 | 2048      | -         |

Table 10. Details of our model discrete VAE.

**Classification Setups:** For our classification task, we employ a two-layer Multi-Layer Perceptron (MLP) with dropout as our classification head. In this process, we extract the output feature of the [**CLS**] token and perform max-pooling on the remaining node's features. These two features are subsequently fused and fed into our classification head. The comprehensive architecture of our classification head is presented in Table 10, where  $N_{cls}$  represents the number of classes specific to the dataset under consideration. The details of hyper-parameters of classification task are shown in Table 11.

| Config                 | Value                             |
|------------------------|-----------------------------------|
| optimizer              | AdamW                             |
| learning rate          | 5e-4                              |
| weight decay           | 0.05                              |
| learning rate schedule | cosine                            |
| warmingup epochs       | 10                                |
| augmentation           | ScaleAndTranslate                 |
| batch size             | 32                                |
| number of points       | 1024                              |
| number of groups       | 64                                |
| input length           | 64                                |
| group size             | 32                                |
| epochs                 | 300                               |
| dataset                | ModelNet [55] & ScanObjectNN [50] |

Table 11. Details of object classification fune-tuning.

| Config                 | Value                             |
|------------------------|-----------------------------------|
| optimizer              | AdamW                             |
| learning rate          | 5e-4                              |
| weight decay           | 0.05                              |
| learning rate schedule | cosine                            |
| warmingup epochs       | 10                                |
| augmentation           | ScaleAndTranslate                 |
| batch size             | 16                                |
| number of points       | 2048                              |
| number of groups       | 128                               |
| input length           | 64                                |
| group size             | 32                                |
| epochs                 | 300                               |
| dataset                | ModelNet [55] & ScanObjectNN [50] |

Table 12. Details of segmentation fune-tuning.

**Segmentation Setups:** We employ an upsamplingpropagation strategy that comprises two essential steps: 1) geometry-based feature upsampling and 2) hierarchical feature propagation. These steps enable us to effectively tackle the challenge of dense prediction by incorporating both local and global information in the feature maps.

To capture a comprehensive range of information, we extract features from multiple layers of the transformer architecture. Notably, shallow layers tend to capture low-level details, whereas deeper layers encapsulate higher-level information. To enable upsampling of feature maps at different resolutions, we employ a two-step approach. Firstly, we apply Farthest Point Sampling (FPS) to the original point cloud, generating point clouds at various resolutions. Subsequently, we upsample the feature maps from different layers to match the corresponding resolutions accordingly. This approach allows us to effectively leverage features at different levels of granularity, enhancing the overall representation capacity of the model.

After obtaining feature maps at varying resolutions, we proceed with feature propagation from coarse-grained to



Figure 5. Results on point cloud generation autoregressively. It is evident that we have largely reconstructed the original point cloud.



Figure 6. Text-conditional point cloud generation results.

fine-grained feature maps. Subsequently, we employ a lightweight DGCNN to update the feature representation of the points in dense point cloud. This hierarchical feature update process is iteratively performed as the resolution increases, ultimately yielding a dense feature map that can be effectively leveraged for segmentation tasks. For a comprehensive understanding of the segmentation head's architecture and the hyper-parameters in segmentation task, please refer to Table 10 and Table 12.

**Unconditional and Conditional Point Generation:** We visualize the results of unconditional point cloud generation using GPM and present them in Figure 5. And owing to dividing input into PartA and PartB during pre-training, our model fits to conditional point cloud generation tasks naturally. In this work, we focus on text-conditional point cloud generation tasks. Each text input is associated with three different templates, and we randomly select one template as a condition for point cloud generation. The results of this process are illustrated in Figure 6.

#### 6.4. Additional Ablation Results

In order to ensure fairness and account for the discrepancy in  $D_{in}$  compared to the setting in Point-BERT [63], we con-

duct experiments to examine whether the change of  $D_{in}$  will lead to performance enhancements. The experimental results are presented in the Table 13 below.

| $D_{in}$ | Acc (ModelNet 1k) | Cls.mIOU | Inst.mIOU |
|----------|-------------------|----------|-----------|
| 256      | 93.7              | 84.22    | 85.78     |
| 384      | 93.8              | 84.20    | 85.80     |

Table 13. Results on ModelNet dataset classification and segmentation tasks with different  $D_{in}$ . It can be observed that the impact of different  $D_{in}$  on the results is negligible, to the extent that it can be disregarded.