
General Point Model Pretraining with Autoencoding and Autoregressive

Supplementary Material

6. Implementation Details

6.1. Stage 1: Discrete VAE Pre-training

Architecture: Following [63], our discrete VAE (dVAE)
consists of a tokenizer and decoder. The tokenizer module
encompasses a robust 4-layer DGCNN [53], while the de-
coder module integrates a 4-layer DGCNN, followed by the
FoldingNet [60]. The comprehensive network architecture
of our dVAE is meticulously depicted in Table 7, encom-
passing essential dimensions such as Din (input feature di-
mension), Dout (output feature dimension), and Dmid (hid-
den layer dimension). Moreover, Nout denotes the number
of point groups in each layer, and K signifies the number of
neighbors involved in the k-Nearest Neighbors (kNN) op-
eration. To further enhance the representation, the Fold-
ingLayer incorporates 2D grids into the input, ultimately
generating immersive 3D point clouds.

Structure Module Din Dout K Nout Dmid

dVAE tokenizer

Linear 384 128 - - -
DGCNN 128 256 4 64 -
DGCNN 256 512 4 64 -
DGCNN 512 512 4 64 -
DGCNN 512 1024 4 64 -
Linear 2304 8192 - - -

dVAE decoder

Linear 384 128 - - -
DGCNN 128 256 4 64 -
DGCNN 256 512 4 64 -
DGCNN 512 512 4 64 -
DGCNN 512 1024 4 64 -
Linear 2304 256 - - -
MLP 256 48 - - 1024

FoldingLayer 256 3 - - 1024

Table 7. Details of our model discrete VAE.

Hyper-parameters: We define the learnable vocabulary
size as 8192 in our approach, with each individual ’word’
represented as a 384-d vector. The dVAE’s optimal perfor-
mance heavily relies on two critical hyperparameters: α for
the Kullback-Leibler (KL) loss term and the temperature τ
for the Gumbel-Softmax distribution. We follow [63], ini-
tially set α to 0 for the first 18 epochs, approximately 10,000
steps, gradually increasing it to 0.1 over the subsequent 180
epochs, roughly 100,000 steps, employing a cosine sched-
ule. Regarding τ , we adopt a similar decay strategy as de-
scribed in [41], progressively reducing it from 1 to 0.0625
throughout the initial 180 epochs with a cosine schedule,
comprising around 100,000 steps.

Experiment Settings: Table 8 shows the experimental
settings for dVAE pre-training in stage 1.

Config Value

optimizer AdamW [31]
learning rate 5e-4
weight decay 0.05

learning rate schedule cosine [30]
warmingup epochs 10

augmentation RandomSampling
batch size 600

number of points 1024
number of groups 64

group size 32
epochs 300
dataset ShapeNet

Table 8. Experiment settings for dVAE pre-training.

6.2. Stage 2: GPM Pre-training

Config Value

optimizer AdamW
learning rate 5e-4
weight decay 0.05

learning rate schedule cosine
warmingup epochs 3

augmentation ScaleAndTranslate
batch size 448

number of points 1024
number of groups 64

input length 129
group size 32
mask ratio [0.25, 0.45]

mask method rand mask
epochs 300
dataset ShapeNet

Table 9. Experiment setting for our GPM pre-training.

Architecture: Adhering to [63], we adopt the standard
Transformer architecture as the backbone of our GPM. It
comprises a cascade of Transformer blocks [51], each com-
posed of a multi-head self-attention layer and a FeedFor-
ward Network (FFN). Within these two layers, we incorpo-
rate LayerNorm (LN) to ensure optimal performance and
stability.

Hyper-parameters: In our experiments, we configure the
transformer architecture with 12 blocks. Each multi-head
self-attention layer consists of 6 heads. Additionally, the
feature dimension of the transformer layer is set to 384.
Following [63], we employ the stochastic depth strategy as
proposed in [49], incorporating a dropout rate of 0.1.

Experiment Settings: In our study, we divide the input
into two parts: PartA and PartB. The sequence length of
PartA is 64, and we prepend a [CLS] token at the beginning
for downstream task fine-tuning. At the beginning of PartB,
we insert an [SOS] token to indicate the start of the autore-
gressive process. We use {[SOS], p1, ..., pn−1} as PartB and
{p1, p2, ..., pn} as the supervision signal for the autoregres-
sive process. Therefore, the total input sequence length is
129. The detailed experiment setup is shown in Table 9.

6.3. Downstream Tasks

Structure Module Din Dout K Nout Dmid

classification head MLP 768 Ncls - - 256

segmentation head

MLP 387 384 - - 1536
DGCNN 384 512 4 128 -
DGCNN 512 384 4 128 -
DGCNN 384 512 4 256 -
DGCNN 512 384 4 256 -
DGCNN 384 512 4 512 -
DGCNN 512 384 4 512 -
DGCNN 384 512 4 2048 -
DGCNN 512 384 4 2048 -

Table 10. Details of our model discrete VAE.

Classification Setups: For our classification task, we
employ a two-layer Multi-Layer Perceptron (MLP) with
dropout as our classification head. In this process, we ex-
tract the output feature of the [CLS] token and perform
max-pooling on the remaining node’s features. These two
features are subsequently fused and fed into our classifica-
tion head. The comprehensive architecture of our classifi-
cation head is presented in Table 10, where Ncls represents
the number of classes specific to the dataset under consider-
ation. The details of hyper-parameters of classification task
are shown in Table 11.

Config Value

optimizer AdamW
learning rate 5e-4
weight decay 0.05

learning rate schedule cosine
warmingup epochs 10

augmentation ScaleAndTranslate
batch size 32

number of points 1024
number of groups 64

input length 64
group size 32

epochs 300
dataset ModelNet [55] & ScanObjectNN [50]

Table 11. Details of object classification fune-tuning.

Config Value

optimizer AdamW
learning rate 5e-4
weight decay 0.05

learning rate schedule cosine
warmingup epochs 10

augmentation ScaleAndTranslate
batch size 16

number of points 2048
number of groups 128

input length 64
group size 32

epochs 300
dataset ModelNet [55] & ScanObjectNN [50]

Table 12. Details of segmentation fune-tuning.

Segmentation Setups: We employ an upsampling-
propagation strategy that comprises two essential steps: 1)
geometry-based feature upsampling and 2) hierarchical fea-
ture propagation. These steps enable us to effectively tackle
the challenge of dense prediction by incorporating both lo-
cal and global information in the feature maps.

To capture a comprehensive range of information, we ex-
tract features from multiple layers of the transformer archi-
tecture. Notably, shallow layers tend to capture low-level
details, whereas deeper layers encapsulate higher-level in-
formation. To enable upsampling of feature maps at differ-
ent resolutions, we employ a two-step approach. Firstly, we
apply Farthest Point Sampling (FPS) to the original point
cloud, generating point clouds at various resolutions. Sub-
sequently, we upsample the feature maps from different
layers to match the corresponding resolutions accordingly.
This approach allows us to effectively leverage features at
different levels of granularity, enhancing the overall repre-
sentation capacity of the model.

After obtaining feature maps at varying resolutions, we
proceed with feature propagation from coarse-grained to

armchairchair plane
Input Generation Input Generation Input Generation

Figure 5. Results on point cloud generation autoregressively. It is evident that we have largely reconstructed the original point cloud.

There is an airplane in the scene.

A photo of a small chair.

A plastic guitar.

Text Input Generation

Figure 6. Text-conditional point cloud generation results.

fine-grained feature maps. Subsequently, we employ a
lightweight DGCNN to update the feature representation of
the points in dense point cloud. This hierarchical feature
update process is iteratively performed as the resolution in-
creases, ultimately yielding a dense feature map that can be
effectively leveraged for segmentation tasks. For a compre-
hensive understanding of the segmentation head’s architec-
ture and the hyper-parameters in segmentation task, please
refer to Table 10 and Table 12.

Unconditional and Conditional Point Generation: We
visualize the results of unconditional point cloud generation
using GPM and present them in Figure 5. And owing to di-
viding input into PartA and PartB during pre-training, our
model fits to conditional point cloud generation tasks natu-
rally. In this work, we focus on text-conditional point cloud
generation tasks. Each text input is associated with three
different templates, and we randomly select one template as
a condition for point cloud generation. The results of this
process are illustrated in Figure 6.

6.4. Additional Ablation Results

In order to ensure fairness and account for the discrepancy
in Din compared to the setting in Point-BERT [63], we con-

duct experiments to examine whether the change of Din

will lead to performance enhancements. The experimental
results are presented in the Table 13 below.

Din Acc (ModelNet 1k) Cls.mIOU Inst.mIOU

256 93.7 84.22 85.78

384 93.8 84.20 85.80

Table 13. Results on ModelNet dataset classification and segmen-
tation tasks with different Din. It can be observed that the impact
of different Din on the results is negligible, to the extent that it can
be disregarded.

	. Introduction
	. Related Work
	. Self-supervised Learning
	. General Language Model

	. Methods
	. Stage 1: Discrete Varitional Autoencoder Pre-training
	. Stage 2: GPM Pre-training
	. Multi-task Pretraining

	. Experiments
	. Pre-training Setups and Implementation
	. Downstream Tasks
	Point Cloud Representation Evaluation
	Point Cloud Generation Evaluation

	. Ablation Study
	. Analysis
	. Visualization

	. Conclusion
	. Implementation Details
	. Stage 1: Discrete VAE Pre-training
	. Stage 2: GPM Pre-training
	. Downstream Tasks
	. Additional Ablation Results

