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This supplementary material covers the following details:
• A brief description of video pose transformers (Sec. A).
• Computation complexity of transformers (Sec. B).
• Additional implementation details (Sec. C).
• Additional quantitative results (Sec. D).
• Additional ablation studies (Sec. E)
• Additional visualization results (Sec. F).

A. Video Pose Transformers
Recent studies of video pose transformers (VPTs) [2, 4, 6–9]
are mainly designed to estimate 3D poses from 2D pose
sequences. These VPTs share a similar architecture, which
includes a pose embedding module (often containing only
a linear layer) to embed spatial and temporal information
of pose sequences, a stack of transformer blocks to learn
global spatio-temporal correlations, and a regression module
to predict 3D human poses. We summarize the architecture
in Figure A. There are two types of pipelines based on their
outputs: the seq2frame pipeline outputs the 3D poses of all
frames, while the seq2seq pipeline outputs the 3D pose of
the center frame.

B. Computation Complexity
Each transformer block consists of a multi-head self-
attention (MSA) layer and a feed-forward network (FFN)
layer. Let N be the number of tokens, D be the dimension,
and 2D be the expanding dimension in the FFN (the expand-
ing ratio in VPTs is typically 2). The calculational costs of
MSA and FFN are O

(
4ND2 + 2N2D

)
, and O

(
4ND2

)
,

respectively. Thus, the total computational complexity is
O
(
8ND2 + 2N2D

)
, which makes VPTs computationally

expensive. Since the dimension D is important to determine
the modeling ability and most recent VPTs employ a D of
512 or 256, we follow their hyperparameter settings and
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Figure A. Summary of VPT architectures. Existing VPTs typically
contain a pose embedding module, a stack of transformer blocks,
and a regression head module. The outputs of the regression head
can be either the 3D poses of all frames for the seq2seq pipeline or
the 3D pose of the center frame for the seq2frame pipeline.

Table A. Implementation details of our method on MHFormer [3],
MixSTE [7], and MotionBERT [9]. (L) - number of transformer
blocks, (C) - dimension, (LR) - initial learning rate, (Flip) - hori-
zontal flip augmentation, (CPN) - Cascaded Pyramid Network [1],
(SH) - Stack Hourglass [5].

Config MHFormer [3] MixSTE [7] MotionBERT [9]

L 3 8 5
C 512 512 256
Training Epoch 20 160 120
Batch Size 210 4 4
LR 1×10−3 4×10−5 5×10−4

Optimizer Amsgrad Adam Adam
Augmentation Flip Flip Flip
2D Detector CPN CPN SH

propose to prune pose tokens of video frames (i.e., reducing
N ) to reduce the computational cost of VPTs.

C. Additional Implementation Details

Our method is built upon three very recent VPTs: MHFormer
[3], MixSTE [7], and MotionBERT [9]. These VPTs achieve
state-of-the-art performance but are computationally expen-



Table B. Comparison of GPU memory cost (G) and training time
(min/epoch) on a single GeForce RTX 3090 GPU.

Method GPU Memory Training Time MPJPE ↓

MHFormer [3] 24.1 223.2 43.0
TPC w. MHFormer 13.8 (↓ 42.7%) 131.0 (↓ 39.7%) 43.0

MixSTE [7] 11.4 17.0 40.9
HoT w. MixSTE 7.6 (↓ 33.3%) 10.5 (↓ 38.2%) 41.0
TPC w. MixSTE 7.3 (↓ 36.0%) 10.1 (↓ 40.6%) 40.4

MotionBERT [9] 10.7 17.4 39.8
HoT w. MotionBERT 6.1 (↓ 43.0%) 8.9 (↓ 47.5%) 39.8
TPC w. MotionBERT 5.7 (↓ 46.7%) 8.4 (↓ 51.7%) 39.2

Table C. Comparison with MixSTE.

Method F f Param (M) FLOPs (G) MPJPE ↓

MixSTE [7] 81 81 33.70 92.42 42.7
MixSTE [7] 147 147 33.73 167.72 41.8
MixSTE [7] 243 243 33.78 277.25 40.9

HoT w. MixSTE 243 81 35.00 167.52 41.0
TPC w. MixSTE 243 81 33.78 161.73 40.4

sive compared to previous methods (see Table 6 in the main
paper). We choose these VPTs as baselines to evaluate our
method, which focuses on preserving the ability to model
spatio-temporal dependencies while reducing computational
costs. We adopt most of the optimal hyperparameters and
training strategies used in [3, 7, 9], as shown in Table A. We
also use the same loss functions for training, such as MPJPE
loss for MHFormer, and weighted MPJPE loss, temporal
consistency loss (TCLoss), and mean per-joint velocity error
(MPJVE) for MixSTE.

Since our TRA is designed for seq2seq pipeline, it is
unnecessary to add it to the model which is designed for
seq2frame pipeline (e.g., MHFormer). To provide a com-
prehensive analysis of our method, we report results with
TPC and with both TPC and TRA. We denote the resulting
models as follows:

• HoT w. MixSTE (MixSTE + TPC + TRA),
• HoT w. MotionBERT (MotionBERT + TPC + TRA),

which are designed for seq2seq pipeline, and:
• TPC w. MHFormer (MHFormer + TPC),
• TPC w. MixSTE (MixSTE + TPC),
• TPC w. MotionBERT (MotionBERT + TPC),

which are designed for seq2frame pipeline.

D. Additional Quantitative Results
Training Memory Cost and Training Time. To demon-
strate the superiority of deploying our boosted VPTs on
resource-limited devices, we report the training GPU mem-
ory cost and training time per epoch in Table B (directly
using their training settings). Besides, we report the re-
sults of our method using the default settings, i.e., {F=351,
n=1, f=117} for MHFormer, {F=243, n=3, f=81} for

Table D. Ablation study on the number of recovered tokens (f ′)
under seq2frame pipeline.

Method Param (M) FLOPs (G) MPJPE ↓

MixSTE [7] 33.78 277.25 40.9

HoT w. MixSTE (f ′=9) 34.88 163.33 40.9
HoT w. MixSTE (f ′=27) 34.89 163.66 40.7
HoT w. MixSTE (f ′=81) 34.92 164.62 40.9
HoT w. MixSTE (f ′=243) 35.00 167.52 40.9

MixSTE, and {F=243, n=1, f=81} for MotionBERT. The
results show that our method significantly reduces the GPU
memory cost and training time while achieving superior re-
sults. For instance, by equipping with HoT, MotionBERT
achieves a memory cost reduction of 43.0% and a training
time reduction of 47.5% while maintaining the same perfor-
mance.

Computation Complexity and Accuracy. In our main pa-
per, we mainly report the results to show that our method
can reduce FLOPs while achieving highly competitive or
even better results (Tables 1, 2, 3, and 6 of the main pa-
per). Here, we compare our method with MixSTE using the
same number of representative tokens and approximately the
same number of FLOPs. To achieve this, we set the input
frame number of the original MixSTE to F=81 and F=147,
respectively. The results in Table C show that our method ob-
tains better results under both settings, further demonstrating
the importance of large receptive fields and the effectiveness
of our method.

E. Additional Ablation Study

Number of Recovered Tokens. In Table D, we conduct
the ablation study on the number of recovered tokens (f ′)
under seq2frame pipeline. Since f ′ differs from the input
frames, we evaluate the performance under the seq2frame
pipeline, which selects the 3D pose of the center frame
as the final estimation. The results show that reducing f ′

slightly decreases the number of parameters, but the perfor-
mance remains almost unchanged. Therefore, we choose
f ′=243, which is more efficient and can be evaluated under
the seq2seq pipeline.

Hyperparameters (n and f ). In Tables 2 and 3 of our main
paper, we conduct ablation studies on the block index of
representative tokens (n) under the seq2frame pipeline and
on the number of representative tokens (f ) under the seq2seq
pipeline, respectively. To systematically explore the hyperpa-
rameters, we further conduct the ablation studies on n under
the seq2seq pipeline (Table E) and on f under the seq2frame
pipeline (Table F). It shows that we can flexibly adjust the
values of n and f to achieve a speed-accuracy trade-off that
meets the specific demands of real-world applications.



Table E. Ablation study on the block index of representative tokens (n) under seq2seq pipeline.

Method Param (M) FLOPs (G) FPS GPU Memory (G) Training Time MPJPE ↓

MixSTE [7] 33.78 277.25 10432 11.4 17.0 40.9

HoT w. MixSTE, n=1 35.00 121.31 (↓ 56.3%) 20374 (↑ 95.3%) 6.0 (↓ 47.4%) 7.8 (↓ 54.1%) 41.8
HoT w. MixSTE, n=2 35.00 144.42 (↓ 47.9%) 17724 (↑ 69.9%) 6.8 (↓ 40.4%) 9.2 (↓ 45.9%) 41.6
HoT w. MixSTE, n=3 35.00 167.52 (↓ 39.6%) 15770 (↑ 51.2%) 7.6 (↓ 33.3%) 10.5 (↓ 38.2%) 41.0
HoT w. MixSTE, n=4 35.00 190.62 (↓ 31.2%) 14094 (↑ 35.1%) 8.5 (↓ 25.4%) 12.0 (↓ 29.4%) 41.4
HoT w. MixSTE, n=5 35.00 213.72 (↓ 22.9%) 12801 (↑ 22.7%) 9.3 (↓ 18.4%) 13.2 (↓ 22.4%) 41.7
HoT w. MixSTE, n=6 35.00 236.82 (↓ 14.6%) 11673 (↑ 11.9%) 10.0 (↓ 12.3%) 14.7 (↓ 13.5%) 41.6
HoT w. MixSTE, n=7 35.00 259.93 (↓ 06.3%) 10791 (↑ 03.4%) 10.9 (↓ 04.4%) 16.0 (↓ 05.9%) 41.5

Table F. Ablation study on the number of representative tokens (f ) under seq2frame pipeline. Here, ∗ denotes the result without re-training.

Method Param (M) FLOPs (G) FPS GPU Memory (G) Training Time MPJPE∗ MPJPE ↓

MixSTE [7] 33.78 277.25 43 11.4 17.0 40.7 40.7

TPC w. MixSTE, f=9 33.78 110.39 (↓ 60.2%) 89 (↑ 107.0%) 5.8 (↓ 49.1%) 7.2 (↓ 57.6%) 44.1 41.5
TPC w. MixSTE, f=16 33.78 115.38 (↓ 58.4%) 88 (↑ 104.7%) 5.8 (↓ 49.1%) 7.5 (↓ 55.9%) 42.7 41.0
TPC w. MixSTE, f=27 33.78 123.23 (↓ 55.6%) 84 (↑ 95.3%) 6.1 (↓ 46.5%) 7.9 (↓ 53.5%) 41.8 40.5
TPC w. MixSTE, f=61 33.78 147.47 (↓ 46.8%) 75 (↑ 74.4%) 7.0 (↓ 38.6%) 9.3 (↓ 45.3%) 41.2 40.5
TPC w. MixSTE, f=81 33.78 161.73 (↓ 41.7%) 68 (↑ 58.1%) 7.3 (↓ 36.0%) 10.1 (↓ 40.6%) 41.1 40.4
TPC w. MixSTE, f=121 33.78 190.26 (↓ 31.4%) 62 (↑ 44.2%) 8.3 (↓ 27.2%) 11.7 (↓ 31.2%) 40.9 40.4
TPC w. MixSTE, f=135 33.78 200.24 (↓ 27.8%) 58 (↑ 34.9%) 8.5 (↓ 25.4%) 12.4 (↓ 27.1%) 40.9 40.2

F. Additional Visualization Results
Selected Tokens. In Figure 7 of our main paper, we provide
statistics visualization of selected tokens by taking some
samples of consecutive video frames as input with a tem-
poral interval of 1 between neighboring samples. For more
comprehensive observation, we further statistically visualize
selected tokens of different token pruning strategies using
random samples (temporal interval is set to 243), i.e., the
neighboring samples have no overlapping frames. The frame
indexes and frequency count of frame indexes of selected
tokens are shown at the top and bottom of Figure B. The
visualization figure of motion pruning (Figure B (c)) shows
the most significant changes compared to Figure 7 of our
main paper. The reason for this is that the random samples
do not contain consecutive motion information. Interestingly,
the visualization figures of frame indexes between TPC and
motion pruning are somewhat similar but our TPC selects
more tokens for the center frame. Besides, the performance
of motion pruning is much worse than our TPC due to noise
frames (see Table 4 of main paper).
Cluster Groups. The visualization in Figure C depicts clus-
ter groups corresponding to varying numbers of representa-
tive tokens (f ). We observe that the cluster primarily groups
neighboring tokens into the same group, as the nearby poses
are similar. Moreover, it also groups some tokens that are
relatively distant from each other into the same group based
on their feature similarity.
3D Pose Reconstruction. Figure D presents the qualitative
comparison among the proposed HoT w. MixSTE and TPC
w. MixSTE, and MixSTE [7] on Human3.6M dataset. Fur-
thermore, Figure E shows the qualitative results on challeng-

ing in-the-wild videos. These results confirm the ability of
our method to produce accurate 3D pose estimations. How-
ever, in challenging scenarios, there are some failure cases
where our method cannot accurately estimate 3D human
poses due to factors such as partial body visibility, rare poses,
and significant errors in the 2D detector (Figure F). We also
provide visualizations of recovering 3D human poses in
Figure G, which illustrate that our method can predict realis-
tic 3D human poses of the entire sequence, thereby further
demonstrating the effectiveness of the proposed TRA.
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Figure B. Statistics visualization of selected tokens for different token pruning strategies. Top: Frame indexes of selected tokens for some
samples (140 samples) of video sequences (243 frames). Blue points represent selected tokens and white points represent pruned tokens.
Bottom: Frequency count of frame indexes of selected tokens for these samples.
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Figure C. Visualization of cluster groups for the different numbers of representative tokens f . In each row, points of the same color represent
the same cluster group.
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Figure D. Qualitative comparison among the previous state-of-the-art method (MixSTE [7]), our HoT w. MixSTE, and our TPC w. MixSTE
on Human3.6M dataset.
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Figure E. Qualitative results of our method on challenging in-the-wild videos.
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Figure F. Failure cases in challenging scenarios.
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Figure G. Visualization of input images, estimated 3D poses (cyan), and ground truth 3D poses (black) from three video sequences. The 2D
poses of selected frames are colored in red, and the 2D poses of pruned frames are colored in gray. The 3D poses of selected frames are
highlighted with red rectangular boxes.
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