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Figure S1. Illustration of integrating DSECN into existing embedding-based GZSL methods (EBGZSL). (a) Main framework: the frame-
work contains three components. The existing GZSL method flow only utilizes the paired semantic features and visual features from seen
classes to establish the relations between semantic and visual features, thereby limiting the performance of recognition for dissimilar unseen
classes. The external class name flow introduces diverse visual-semantic relations from external class names, thus assisting the recognition
of dissimilar unseen classes. The feature map supervision flow is only used when the existing GZSL method belongs to local EBGZSL
method, and is used to constrain the generated feature maps of seen classes to be consistent with the GT feature maps. (b) PG Structure &
loss: for global EBGZSL methods, we adopt a simple MLP as PG to generate global visual features of external classes, and the training
objective includes the original loss LS

EMB of existing GZSL method, and the loss LE
EMB + LE

PG from the external class name flow. In
contrast, for local EBGZSL methods, we employ convolutional neural network as PG to generate the feature map from global semantic
features. The loss LS

PG of feature map supervision flow is added to the training objective to constrain the generated feature map in feature
map level. The classification labels Y E of the external classes are the sets of Y EB and Y HA in the main paper, i.e., Y E =

{
Y EB , Y HA

}
.
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Figure S2. Illustration of integrating DSECN into existing generative-based GZSL methods. The existing generative-based GZSL methods
(GBGZSL) learn a conditional generative model based on samples of seen classes conditioned on their semantic features, and then the
learned generative model is used to generate visual features of unseen classes using the semantics of unseen classes. Next, the GZSL
classifier is trained using the generated visual features of unseen classes and the visual features of seen classes. By introducing the auxiliary
DSECN flow into the existing GBGZSL methods, the conditional generative model can utilize the diverse relations between semantics and
visual features from external classes, which enables the conditional generative model to generate more accurate visual features of dissimilar
unseen classes. The more accurately generated unseen class visual features facilitate the training of the GZSL classifier, thereby assisting
in the identification of dissimilar unseen classes.

A. Integrating into Existing GZSL Methods

The proposed DSECN can be easily integrated into other
GZSL approaches and improve their robustness for dis-
similar unseen classes. In the following subsections,
we describe the details of how to integrate DSECN into
embedding-based and generation-based GZSL methods.

A.1. Embedding-based Methods

As shown in Fig. S1, the existing embedding-based GZSL
methods (EBGZSL) align the semantic features and visual
features of seen classes to a common space, and then the
learned embedding space is used to perform recognition.
However, when the unseen classes are dissimilar to seen
classes, they perform poorly since they can only transfer
little information from seen classes to recognize the dissim-
ilar unseen classes. The proposed DSECN can easily be
integrated into the existing EBGZSL methods to introduce
diverse semantic-visual relations of external classes, thus
improving their performance for identifying dissimilar un-
seen classes. The existing EBGZSL methods can be broadly
categorized into global EBGZSL and local EBGZSL. The
global EBGZSL methods, such as CN [7], take the paired

global visual features and semantic features as inputs to
establish the relations between semantic and visual fea-
tures. In contrast, the local EBGZSL methods, such as
TransZero [2], extract the feature map using a pre-trained
backbone, and utilize semantic descriptions as guidance
to discover the discriminative local features between seen
classes and unseen classes. Next we describe how to inte-
grate DSECN into the current mainstream global and local
EBGZSL methods.

Global EBGZSL methods. The existing GZSL flow
denotes the original pipeline of existing GZSL methods.
DSECN is integrated into the existing global EBGZSL
methods by the external class name flow (ECNF). Specif-
ically, the diverse semantics from external classes are fed
into the prototype generator (PG) to generate the visual fea-
tures of external classes. Then we constrain that the gener-
ated semantic features should be able to be accurately clas-
sified with a frozen pre-trained classification head. Next,
the generated visual features and semantic features of exter-
nal classes are used to train the existing EBGZSL methods
via LE

EMB . This enriches the visual-semantic relationships
available to the trained GZSL model, thus assisting in the
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Figure S3. Effect of diverse semantic enhancement (s) and hierarchy taxonomy enhancement (h) for GZSL. We remove these two compo-
nents as our baseline (b). In the ablation study, we add DSE (s) and HTE (h) step by step to show their effect on GZSL.

identification of dissimilar unseen classes.
Local EBGZSL methods. DSECN is integrated into the
existing local EBGZSL methods by the external class name
flow (ECNF) and the feature map supervision flow (FMSF).
The ECNF pipeline for local and global EBGZSL is simi-
lar. The difference is that the structure of PG uses a con-
volutional neural network to generate feature maps instead
of using MLP to generate global feature vectors. Another
difference is that the generated feature maps need to be con-
verted into global visual features required by the frozen pre-
trained classification head through a global average pooling
(GAP) layer. Considering that the feature map generated by
PG should be as close as possible to the real feature map,
the FMSF is further introduced into the existing GBGZSL
methods. Specifically, the PG takes the semantic features of
seen classes as inputs to generate the visual features of seen
classes, and then the generated visual feature maps are con-
strained to have the smallest mean square error with the real
seen class feature maps extracted by pre-trained backbone.

A.2. Generative-based Methods.

As shown in Fig. S2, the mainstream generative-based
GZSL methods (GBGZSL), such as DGZ [1], learn a gener-
ative model to generate the visual features of unseen classes.
Then a GZSL problem can be converted into a conven-
tional supervised learning problem. Therefore, the core of
the GBGZSL method is the accurate generation of unseen
class visual features. However, the existing GBGZSL meth-
ods heavily rely on the semantics and visual features from
seen classes to learn the conditional generative model. This
makes these models perform poorly on dissimilar unseen
classes, as little information can be transferred from seen
to dissimilar unseen classes. Hence, the proposed DSECN
method is integrated into the existing GBGZSL methods to
assist in the learning of the conditional generative model.
Specifically, the auxiliary DSECN flow introduces the di-
verse semantics from external class names. Then the exter-
nal class visual features generated by the conditional gen-
erative model are constrained to be as consistent as pos-
sible with the real visual features through the frozen pre-

trained classification head. This enables the learned gen-
erative model to simultaneously utilize the semantic-visual
relationships of seen classes and external classes to generate
visual features of dissimilar unseen classes, thereby improv-
ing the recognition performance of the GBGZSL methods
for dissimilar unseen classes.

B. Implementation Details
We use the data splits proposed by [8] and extract vi-
sual features (with dv = 2048) for each image by the
ResNet101 [4] backbone pre-trained on ImageNet-1K [3].
The semantic embedding of classes are extracted by the text
encoder of CLIP VIT/B-32 [6] and W2V [5]. Following
[7], the scale factor γ of the visual classifier V C is set with
5. The Adam optimizer is used to train our model. The
learning rate and weight decay of Adam are 5 × 10−4 and
10−4. The training epochs and batch size are set to 50 and
256. We use PyTorch to implement our model. All runs are
conducted on the same hardware: NVIDIA GeForce RTX
3090 GPU, ×64 Intel Xeon Gold 6226R CPU and 256 GB
RAM.

C. Ablation Study on W2V Embedding
The results are presented in Fig. S3, with further analysis
provided in Sec. 4.3 of the main paper.

D. Qualitative Insight
To provide additional qualitative insight into the improve-
ments that can be gained using diverse semantic en-
hancement s and hierarchy taxonomy enhancement h,
we randomly select five seen classes from the CUB
dataset. The five unseen classes are randomly selected
from the complementary set of CUB (du = ∁SetCUB =
{AWA2, SUN}), which ensures that the unseen classes
are dissimilar to seen classes. The PCA visualization of
the features (Xu, V u, V s) for these classes are shown in
Fig. S4. From the results, we can see that when the baseline
b only utilizes the semantics from seen classes, the synthe-
sized visual prototypes of unseen classes V u (⋆) are close
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Figure S4. Qualitative evaluation with PCA visualization. The
• denotes the visual features of test samples from unseen classes
Xu. The ⋆ and ▲ denote the synthesized class-level visual pro-
totypes of unseen classes V u and those of seen classes V s, re-
spectively. The synthesized class-level visual prototypes V are ex-
tracted by the semantic-to-visual network (S2V). We use 10 colors
to denote randomly selected 5 seen classes and 5 unseen classes.
Refer to § D.

Figure S5. Hyper-parameter analysis on AWA2 datasets.

to those of seen classes V s (▲) and far from the real visual
features of unseen classes Xu (•). This means that if the
GZSL model only utilizes the semantics from seen classes,
the GZSL model tends to misclassify unseen classes into
seen classes. By adding the s or h, the distance between V u

(⋆) and Xu (•) is reduced. It demonstrates that introduc-
ing additional semantic information exploited from exter-
nal class names, the similarities between synthesized visual
prototypes V u (⋆) and visual features Xu (•) of samples
from unseen classes can be improved, and thus boost the
recognition ability of unseen classes. The b + s + h adds
both s and h to the baseline, and the distance between V u

(⋆) and Xu (•) is the closest. This indicates that the diverse
semantic enhancement s and hierarchy taxonomy enhance-
ment h are complementary to each other for GZSL.

E. Hyper-Parameter Analysis
There are two main hyper-parameters in our algorithm,
i.e., the trade-off factor (λEB) and (λHA). We conduct
the hyper-parameter analysis on the AWA2 dataset with
CLIP semantic embedding. λEB and λHA are chosen from
{0, 0.01, 0.1, 1, 10, 100}. The harmonic mean accuracy un-
der practical GZSL setting Hpra is chosen as the evaluation
metric. The results are reported in Fig. S5. It can be ob-
served that: 1) when λEB = 0 and λHA = 0, the diverse
semantic enhancement (DSE) and hierarchy taxonomy en-
hancement (HTE) are not used. It leads to very poor per-
formance; 2) as λ gradually increases, the overall perfor-
mance becomes better, which demonstrates the effective-
ness of DSE and HTE; 3) the proposed method can obtain
satisfactory performance at a wide range of λ greater than
10. This indicates that our algorithm is not quite sensitive
to these hyper-parameters.
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