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Supplementary Material

A. Implementation Details
ST-P3 uses partially incorrect training and evaluation
data. For the common practice, the future GT planning
trajectory is generated from the ego locations of the samples
in the subsequent 3 seconds. However, since one nuScenes
clip is usually a 20s video, which means that the sam-
ples at the tail of the video (within 17s-20s) cannot pro-
duce a complete future trajectory, normal methods [3, 4]
will perform special processing on these special samples by
using masks, but ST-P3 [2] did not do this. ST-P3 mis-
takenly used samples from other scenes while generating
GT of these tail samples, so errors occurred during train-
ing and testing. Related issue: https://github.com/
OpenDriveLab/ST-P3/issues/24.

Ego Status Usage Details For UniAD (ID-1) and VAD-
Base (ID-4), in order to exclude ego status from the Bird’s
Eye View (BEV) generation phase, we set the use can bus
flag to False. Conversely, for UniAD (ID-3), to incorporate
ego status into its planner, we adhered to the methodology
used in VAD, which involves concatenating the ego status
vector with the query features.

B. Metrics Details.
Collision Rate. While current methods tend to evaluate
the collision rates of planned trajectories [1–5, 7], there are
issues in both the definition and implementation of this met-
ric in existing approaches. First of all, in open-loop end-
to-end autonomous driving, other agents do not provoke a
response from the ego car. Instead, they strictly adhere to
their predetermined trajectories. Consequently, this leads to
a bias in the calculation of collision rates. The second issue
arises from the fact that the planning predictions generated
by current methods consist solely of a series of trajectory
points. As a consequence, in the final collision calculation,
the yaw angle of the ego car is not taken into account. In-
stead, it is assumed to remain unchanged. This assumption
leads to erroneous results, particularly in turning scenarios,
as shown in Fig. 1.

There are also problems in the current implementation.
The current definition of the collision rate of each single
sample is:

CR(t) =

∑N
i=0 Ii
N

,N = t/0.5, (1)

N represents the number of steps at intervals of t seconds,
and Ii denotes whether the ego car at step i will intersect
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Figure 1. Current methods [2–4] neglect to consider yaw angle
variations of the ego vehicle, consistently preserving a 0 yaw an-
gle (depicted by the gray vehicle), thereby resulting in an increased
incidence of false negatives (a) and false positives in (b) collision
detection. In this paper, we improve collision detection accuracy
by estimating the vehicle’s yaw angle from variations in its trajec-
tory (depicted by the red vehicle).
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Figure 2. In open-loop autonomous driving approaches, the fu-
ture trajectory is forecasted from the starting location of the ego
vehicle. Within the imitation learning paradigm, the predicted tra-
jectory ideally should closely align with the actual ground truth
trajectory. Furthermore, trajectories forecasted at successive time
steps should maintain consistency, thereby guaranteeing the con-
tinuity and smoothness of the driving strategy. Consequently, the
predicted trajectories depicted in red boxes of ?? not only deviate
from the ground truth trajectory but also demonstrate significant
divergence at various timestamps.
with other agents. In this paper, we modify the definition of
collision to

CR(t) = (

N∑
i=0

Ii) > 0, N = t/0.5. (2)

For previous implementation, they assumed that colli-
sions at each moment were mutually independent, which
does not align with real-world scenarios. Our modified ver-
sion yields values that more precisely indicate the collision
rate occurring along the predicted trajectory.

Trajectory Smoothness We also assessed the stability of
the model’s predicted trajectories. Given that the model pre-
dicts the trajectory for the next three seconds at each mo-
ment, it means that for every absolute moment in time t,
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Method L2 (m) ↓ σwd↓
1s 2s 3s Avg. 1s 2s 3s Avg.

Baseline 0.30 0.52 0.85 0.56 0.03 0.19 0.70 0.31

Table 1. The smoothness σwd of predicted trajectories.

the model predicted multiple waypoints at time t from var-
ious preceding times. We see these different waypoints as
a distribution. In non-extreme conditions, this distribution
should be as concentrated as possible to ensure smoothness
in the driving process, as shown in Fig. 2. To quantita-
tively analyze this distribution, we calculated the squared
deviation distance of these distribution points, as shown in
Tab. 1. We found that this smoothness metric does not con-
vey more information than the L2 metric, and we believe
that this requires more exploration to verify the rationality
of an metric.

Valid Samples We discussed above that for the tail sam-
ples without complete GT trajectories. The normal method
will use the mask for special identification. During evalua-
tion, the previous methods have different processing meth-
ods. One is that if a sample does not have a complete GT
future trajectory, it will not be considered during evalua-
tion. The second strategy only considers the valid part of
the GT future trajectory if the length of the GT trajectory
is less than 3s. In this paper, we follow the first strategy.
For 6019 samples of nuScenes val split, the number of final
valid samples is 5119 (85% of all samples). The reason why
we didn’t reproduce the correct version of ST-P3 is that the
definition of valid samples of ST-P3 is different from others.
Valid samples of ST-P3 must use sufficient historical data,
so ST-P3 does not predict trajectories for the first few sam-
ples of each clip. Even if we reproduce the correct ST-P3,
we cannot compare it with other methods for a fair compar-
ison.

(a) UniAD (without post optimization ) (b) UniAD (with post optimization )

Figure 3. In order to avoid collisions as much as possible, post-
optimization is introduced in UniAD [3] to keep the predicted tra-
jectory away from other vehicles. However, during actual traffic
driving, other factors need to be considered, such as road condi-
tions. As shown in figure (b), UniAD rushed to the road boundary
in order to avoid the possible danger caused by the opposite lane
and actually caused another accident.
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Figure 4. BEVFormer incorporates ego status information during
the initialization of BEV queries, a nuance not addressed by cur-
rent end-to-end autonomous driving approaches [3, 4, 7].

C. Neglected Ego Status in Perception Stage.
In fact, a crucial question is whether the method really com-
pletely eliminates the influence of ego status. The pipeline
of the existing open-loop end-to-end autonomous driving
methods [2–4, 7] basically follows the ?? (b). Given that
ego status exerts a substantial influence on the planning
results, these methods actually have clear explanations on
whether to introduce ego status in the planner. However,
methods [3, 4] ignored the impact of introducing ego status
in the early perception stage on the planning results. In de-
tail, both UniAD [3] and VAD [4] utilize BEVFormer [6] as
their BEV generation module. For BEVFormer, it involves
projecting the ego status onto the hidden features and incor-
porating it into the BEV query, as shown in Fig. 4. This
trick exerts a marginal effect on perception performance, as
shown in Tab. 2. However, when BEVFormer is integrated
into an end-to-end pipeline, the introduction of ego status
at this initial stage can wield a substantial influence on the
ultimate planning performance. As shown in ??, upon the
removal of the ego status input during the BEV stage, the
planning performance of both VAD and UniAD exhibits a
marked decline. It is important to clarify that our position
is not opposed to the use of ego status; rather, we argue that
within the context of current datasets and evaluation met-
rics, the integration of ego status can significantly impact,
and even determine, the planning results. Unfortunately,
the incorporation of ego status within the perception module
is often overlooked in the existing end-to-end autonomous
driving methods. Therefore, it is essential in comparative
analyses of different methodologies to carefully examine
the role and impact of ego status to ensure fairness and con-
sistency in the evaluations.

Methods Ego Status mAP↑ NDS↑
BEVFormer ✓ 41.6 51.7
BEVFormer ✗ 41.3 51.5

Table 2. The integration of ego status within BEVFormer exerts
only a marginal effect on the perception performance.

D. Post Optimization of UniAD.
As demonstrated in Fig. 3, we observe that while UniAD
utilizes collision optimization, the resulting optimized tra-
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jectory tends to intersect with the road boundary at a higher
rate. This occurs because the collision optimizer overlooks
map priors. In its effort to avoid collisions, the optimizer
disregards other factors that could pose safety risks. How-
ever, if the optimizer were to consider all relevant factors, it
would more closely resemble traditional Planning and Navi-
gation Control (PNC) systems, contradicting the fundamen-
tal motivation of end-to-end autonomous driving.

E. Dropping Cameras
Referencing Table 2 in our main paper, it is observed that
when VAD incorporates ego status as an input, the removal
of camera input does not markedly impair its performance.
A parallel experiment was conducted with VAD [4] devoid
of ego status. We also provide visualization results in Fig. 5.
As delineated in Tab. 3, excluding camera inputs in VAD
without ego status leads to a significant decline in perfor-
mance, particularly regarding L2 distance and collision rate
metrics. Intriguingly, this decrease was not mirrored in the
Intersection rate with road boundary metric.

In fact, when the model operates without using ego status
and with the camera input removed, it relies solely on driv-
ing commands to guide its future direction. In this scenario,
the fact that the intersection rate with road boundaries does
not increase is counter-intuitive. This counter-intuitive phe-
nomenon has driven us to delve deeper into the evaluation
process. As shown in Tab. 4, we compiled statistics on the
intersection metric under different driving commands. The
Intersection-LR metrics show that the model, when operat-
ing without camera input, significantly increases the prob-
ability of interacting with boundaries in turning scenarios.
This is also consistent with our observations from visual-
ization. The real reason lies in the fact that in straight-
driving scenarios (87% of all evaluation samples), remov-
ing the camera input leads the model to adopt a relatively
conservative straight-driving strategy, making it less likely
to intersect with road boundaries (indicated by Intersection-
ST). Since straight-driving scenarios constitute a large pro-
portion of the val split, this results in the model achieving
better overall average results when operating without cam-
era input.

Failure Cases Although the majority of scenarios in the
nuScenes dataset are relatively straightforward, it does in-
clude certain challenging scenes, notably those involving
continuous cornering. As shown in Fig. 6, we can ob-
serve that methods with various settings all yielded subop-
timal predicted trajectories when navigating high-curvature
bends. For challenging scenarios like cornering, where the
system must continuously make evolving decisions, evalu-
ating open-loop autonomous driving systems poses a sig-
nificant challenge. One limitation of open-loop methods is
that they do not suffer from cumulative errors. In detail, in

the case of an extremely erroneous trajectory predicted at
a given timestep, the trajectory starting point for the next
timestep is still based on the GT trajectory. The metric we
utilize, CCR, is adept at identifying low-quality trajectories.
However, an appropriate metric that can effectively high-
light high-quality trajectories remains an intriguing direc-
tion for further exploration.
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Method Img Ego Status L2 (m) ↓ Collision (%) ↓ Intersetion (%) ↓ Det. Map
Corruption 1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg. (NDS) (mAP)

VAD-Base - ✓ 0.17 0.34 0.60 0.37 0.04 0.27 0.67 0.33 0.21 2.13 5.06 2.47 45.5 47.0
VAD-Base Blank ✓ 0.19 0.41 0.77 0.46 0.00 0.40 1.21 0.54 0.35 3.05 7.73 3.71 0.0 0.0

VAD-Base - ✗ 0.69 1.22 1.83 0.06 0.68 2.52 0.84 0.37 1.02 3.44 7.00 3.82 45.1 53.7
VAD-Base Blank ✗ 2.59 4.32 6.09 4.33 2.29 7.89 12.7 7.63 1.07 3.73 6.64 3.81 0.0 0.0

Table 3. Omitting camera inputs in the VAD model, when it does not utilize ego status, results in a marked reduction in performance, as
evidenced by the metrics for L2 distance and collision rate.

Method Img Ego Status CCR ↓ CCR-ST (%) ↓ CCR-LR (%) ↓ Det. Map
Corruption 1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg. (NDS) (mAP)

VAD-Base - ✗ 1.02 3.44 7.00 3.82 2.49 8.50 16.4 9.13 0.95 2.70 5.50 3.05 45.1 53.7
VAD-Base Blank ✗ 1.07 3.73 6.64 3.81 2.63 18.2 32.1 17.6 0.83 1.51 2.72 1.69 0.0 0.0

Table 4. CCR-ST is the CCR rate with going straight driving commands. CCR-LR is the CCR rate with turning left/right commands.

VAD-Base (w/ Ego Status) VAD-Base (w/ Ego Status, w/o Cam.) VAD-Base (w/o Ego Status) VAD-Base (w/o Ego Status, w/o Cam.) GT

Figure 5. When the model uses ego status as an input, removing the camera does not significantly impact its performance. However,
without ego status, omitting camera inputs makes the model more prone to erroneous planning. Red circles indicate potential collisions.

(c) UniAD-Base (ID-3)(b) UniAD-Base (ID-2)(a) UniAD-Base (ID-1)

(g) VAD-Base (ID-6)

(d) Ego-MLP (ID-8)

(f) VAD-Base (ID-5)(e) VAD-Base (ID-4) (h) BEV-Planner (ID-10)
t

Figure 6. In scenarios that necessitate continuous turning, all methods predict suboptimal trajectories.
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