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A. Experimental Details on CIFAR100
We used a PreActResNet18 model on Cifar100 to investi-
gate the influence of CLIP anchors on anchor-based AT per-
formance. We used the CLIP ViT-B/16 text encoder. The
prompt text was set as “This is a photo of a { }”. Three types
of anchors were evaluated: the original CLIP anchors, the
expanded CLIP anchors (see Sec. 3.4), and the MMC an-
chors [10] (the average CoS < 0). The optimization objec-
tives were set to maximize the CoS between output feature
z and different types of GT anchors: zT ay

||z||2 .
We adversarially trained three models with these an-

chors by generating adversarial examples via PGD with
maximum adversarial perturbation ϵ = 8/255 in l∞-norm
bound, with iterative steps T = 10 and the step size 2/255.
We evaluated the robustness of the models against PGD
with 20 iterative steps and step size 2/255. The model was
optimized for 200 epochs by SGD with an initial learning
rate of 0.1, a momentum of 0.9, and a weight decay of
5e−4. The learning rate was reduced by 10 two times af-
ter the 100th and 150th epochs. Fig. 3 shows the learning
curves of the three models on Cifar100 test set.

B. The Derivation from Rotated Anchor to Ex-
panded Anchor

For the unit hyper-sphere, r = 1. According to Eq. (1), the
coordinates of the rotated anchor ãi can be written as
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i denotes the j-th element of ãi, and ϕ̃
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the j-th angular coordinates anchor ãi. Once fixed ϕ0, we

expand the polar angle as ϕ̄(1)
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other coordinates remain unchanged, i.e., ϕ̄(j)
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2, ..., n. Then we can deduce the expressions for the coor-
dinates of the expanded anchor as:
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Thus, we the Cartesian coordinates of expanded anchors āi
are given by:
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C. Pseudo Code of Expansion Algorithm
The pseudo-code of the expansion algorithm can be found
in Algorithm 1. Given the original anchors {ai}Ni=1, we
can obtain the expanded final anchors {âi}Ni=1 by this algo-
rithm.
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Algorithm 1: Expansion Algorithm

Input : The original anchors {ai}Ni=1, where
ai ∈ Rn and N denotes the number of
anchor points.

Output: The expanded text anchors {âi}Ni=1.

1 Find a center: v←
∑N

i=1 ai

||
∑N

i=1 ai||2
2 Calculate a rotation matrix R so that Rv = p, where

p = [1, 0, · · · , 0]
3 for i = 1 to N do
4 ãi ← Rai
5 end
6 ϕ0 ← max1≤i≤N {arccos ã(1)i }, where ã

(j)
i denotes

the j-th element of ãi
7 for i = 1 to N do
8 ϕ̃
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12 ā
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13 end
14 end
15 for i = 1 to N do
16 âi = RTāi
17 end

Return: {âi}Ni=1.

Hyper-Parameter Clean Robust
τ = 0.03 44.37 32.51
τ = 0.07 51.43 35.23
τ = 0.2 58.80 37.52
τ = 0.5 56.07 40.17
τ = 1.0 55.60 40.12

Table S1. Classification accuracy (%) of Conv4-512 on CIFAR-FS
with different τ . Here all experiments are performed based on ex-
panded anchors with A-CE loss and smoothness loss supervision.
The robust accuracy is evaluated by PGD-20.

D. The Influence of τ
As stated in Sec. 3.5, several previous works [8, 12] on
standard training used a temperature parameter τ = 0.07 to
scale the CoS, i.e., L1 becomes:

L⋆
1 = E(x,y)

[
− log

exp(fΘ(x+ δ)T ây/τ)∑N
i=1 exp(fΘ(x+ δ)T âi/τ)

]
. (4)

We empirically observed that this might be harmful to the
zero-shot performance under AT. Tab. S1 shows the classifi-
cation accuracy of Conv4-512 on CIFAR-FS with different
τ in the 5-way zero-shot setting (similar to those in Tab.

3). We can see that the model with smaller τ has worse
adversarial robustness in the zero-shot setting. Thus, for
simplicity, we set τ = 1 in all other experiments.

E. Introduction to Downstream Datasets
We evaluate the zero-shot adversarial robustness trained on
ImageNet-1K on ten downstream datasets, covering a di-
verse range of recognition tasks. AwA2 [13] and aPY [4]
are two popular datasets in the ZSL setting. COCO Objects
are images extracted from the bounding box annotations of
MS COCO [9]. We also include Cifar100 [7], STL10 [3],
Caltech101 [5], and Caltech256 [6] for generic classifica-
tion; OxfordPet [11] for fine-grained classification; DTD
[2] for texture recognition; and SUN [14] for scene recog-
nition.

F. Smoothness v.s. TRADES
Smoothness in LAAT is different from TRADES [15] in
several aspects. First, TRADES tries to minimize the classi-
fication loss on benign examples and the KL divergence be-
tween outputs of benign and adversarial examples, while we
try to minimize the classification loss on adversarial exam-
ples and maximize the Cosine Similarities (CoS) between
benign examples and adversarial examples. Second, the ad-
versarial generation of TRADES is derived from the KL di-
vergence, while the adversarial generation of LAAT only
uses the classification loss (L1).

G. Semantic Consistency v.s. Zero-Shot Per-
formance

We used different CLIP text encoders to investigate the rela-
tionship between the semantic consistency of text encoders
and the zero-shot adversarial performance. We performed
experiments on Cifar100, which has 100 categories belong-
ing to 20 super-categories. Each super-category includes
5 categories, e.g., apple, mushroom, sweet pepper, orange,
and pear belong to the same super-category fruit and veg-
etables. The categories within the same super-category are
semantically similar categories. Therefore, a text encoder
with high semantic consistency should map the categories
within the same super-category to neighboring anchors and
these anchors should have high CoS. We designed two met-
rics to measure the semantic consistency of a text encoder
by using the super-categories.

We first calculated CoS between the category anchors
obtained from a text encoder and then numbered the cate-
gories in descending order of the CoS. The numbers ranged
between 0 to 99. We name them as ranks next. Tab. S2
shows the ranks of five categories in the super-category fruit
and vegetables with text encoder ViT-B/16. For example,
the apple anchor’s CoS with the pear anchor is the 2nd
highest among its 99 CoS with other anchors (except the
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Category Apple Mushroom Sweet pepper Orange Pear

Apple 0 7 1 27 2
Mushroom 7 0 4 23 34

Sweet pepper 1 11 0 32 10
Orange 4 10 3 0 2

Pear 2 30 3 6 0

Table S2. The ranks of categories belonging to the super-category
fruit and vegetables with text encoder ViT-B/16. Each rank is cal-
culated with the row category and all column categories. Each
category has the highest CoS with itself, so the ranks on the diag-
onal are always 0.

Text Encoder Sum of rank Top-5 ratio

RN50x4 332 54.6%
RN50x16 319 54.4%
ViT-B/32 286 60.6%
ViT-B/16 225 61.4%
ViT-L/14 284 58.2%

Table S3. The average sum of ranks and the average top-5 ratio
of ranks on 20 super-categories for each text encoder. The smaller
sum of ranks and the larger top-5 ratio of ranks indicate greater
semantic consistency of a text encoder.

apple anchor itself), so the rank in the first row and the fifth
column of Tab. S2 is 2.

The two metrics were designed based on the ranks of the
CoS described above. Intuitively, the higher the CoS within
a super-category, the smaller the ranks within this super-
category. Note that using ranks has an advantage over using
the CoS directly, as ranks take the relationships between
different super-categories into consideration. We calculated
the sum of ranks and top-5 ratio of ranks within each super-
category, and averaged them over all 20 super-categories as
the two metrics. Take fruit and vegetables in Tab. S2 as an
example, the former is the sum of 5× 5 = 25 ranks, 219 in
this case, and the latter is the ratio of ranks from 0 to 4 out
of 25 ranks, 14/25 = 56% in this case. The smaller sum
of ranks and the larger top-5 ratio of ranks indicate greater
semantic consistency of a text encoder.

Tab. S3 shows each text encoder’s average sum of ranks
and the average top-5 ratio of ranks on the 20 super-
categories. We can see that ViT models are better than
ResNet models under these two metrics. These results on
semantic consistency generally correspond to the results on
zero-shot adversarial robustness in Tab. 7 (note that CIFAR-
FS [1] used in Tab. 7 is a variant of Cifar100), e.g., ViT-
B/16 has the best semantic consistency under these two met-
rics and it also has the best zero-shot adversarial robustness
among these models. This correspondence indicates that the
semantic consistency of the text encoder is one of the keys
to zero-shot adversarial robustness.
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