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We present additional implemental details, comparison,
and analysis results of the proposed LBP framework in this
supplementary material.

1. Implementations.
We follow the implementation of BARON [11] to conduct
experiments. Similar to [6, 11], we employ Faster R-CNN
[7] coupled with ResNet50-FPN [5] as the base detector,
initializing its backbone network with weights from SOCO
[10]. We employ a 2× training schedule (180,000 itera-
tions), with batch size set to 32 (16 for detection and 16
for distillation). We choose SGD [8] as the optimizer, con-
figured with a momentum of 0.90 and a weight decay of
2.50× 10−5. Additionally, following BARON [11], we uti-
lize ViT-B/32 CLIP as the PVLM model, with the fixed con-
text prompts from ViLD [3]. For other hyper-parameters,
we maintain consistency across all experiments, such as
na = 10, θ = 0.95 (consistent with VL-PLM [12]),
τ = 0.02, γ = 0.02, and λbg = 0.05.

2. Transfer to Other Datasets
Similar to [1, 11], we also report the inference performance
of the proposed LBP approach and other previous state-of-
the-art (SOTA) OVD methods when transferring a detector
trained on the LVIS dataset to three other datasets: Pascal
VOC 2007 test set [2], COCOvalidation set [4], and Ob-
jects365 v2 validation set [9]. As shown in Table 6, our
LBP method demonstrates superior inference performance
across these three datasets compared to existing state-of-
the-art methods, showcasing the generalized applicability
of our LBP approach across various scenarios.

3. Additional Ablation Analysis
Further analysis of BOD. To further illustrate the advan-
tages of the proposed BOD module, we attempt to discover
representative results to visualize conceptual overlaps be-
tween background underlying categories estimated during
training and the novel categories during inference, demon-
strated in Figure 4. To be more specific, we choose the rep-

resentative proposals with high predicted probability scores
for three background underlying categories.

Figure 4(a) shows one of the estimated background cat-
egories, which exhibits significant overlap with “bus” pro-
posals belonging to the novel categories. This observation
strongly demonstrates the effect of our proposed BOD in
discovering meaningful latent categories from a multitude
of background proposals during model training.

Conversely, the other estimated category portrayed in
Figure 4(b) demonstrates substantial connections with ob-
jects associated with two distinct novel categories: “skate-
board” and “snowboard”. This suggests that while BOD
might not precisely differentiate all novel categories, it
effectively leverages knowledge from visually similar-
looking categories, thereby significantly enhancing the
model’s representations of objects w.r.t. those categories.

In essence, both Figure 4(a) and Figure 4(b) distinctly
illustrate conceptual overlaps in contextual embeddings be-
tween the background underlying categories estimated dur-
ing training and the novel categories accessed during infer-
ence.

Moreover, Figure 4(c) illustrates that the represented
background underlying category encompasses diverse types
of food, devoid of significant semantic overlap with the in-
ference novel categories, and nevertheless, it can still de-
tect objects pertinent to that category. This discovery un-
derscores the substantial capacities of the proposal model
in discovering and leveraging the knowledge of implicit ob-
jects from background proposals, markedly bolstering fea-
ture discrimination output by our model, and consequently,
significantly enhancing detector performance.
More analysis of IPR. To further validate the necessity of
IPR, we visualize the distributions of the contextual em-
beddings, encoded by text encoder of CLIP, from base cat-
egories Cb, novel categories Cu, and background underlying
categories CO in the OV-COCO task, depicted in Figure 5.
As illustrated, during inference, several embeddings from
CO closely resemble those of some novel categories from
Cu, indicating a probable semantic similarity or conceptual
overlap between the two categories. As displayed in Eq.
(16), for each c′ ∈ CO, the proposed IPR module adjusts
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Pascal VOC MS-COCO Objects365
AP50 AP75 AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

Supervised 78.5 49.0 46.5 67.6 50.9 27.1 67.6 77.7 25.6 38.6 28.0 16.0 28.1 36.7

ViLD§ [3] 73.9 57.9 34.1 52.3 36.5 21.6 38.9 46.1 11.5 17.8 12.3 4.2 11.1 17.8
DetPro§ [1] 74.6 57.9 34.9 53.8 37.4 22.5 39.6 46.3 12.1 18.8 12.9 4.5 11.5 18.6
BARON‡ [11] 76.0 58.2 36.2 55.7 39.1 24.8 40.2 47.3 13.6 21.0 14.5 5.0 13.1 20.7
LBP‡ (ours) 76.1 58.4 36.8 56.5 39.8 25.6 40.6 48.1 14.3 21.8 15.1 5.5 13.7 21.6

Table 6. Comparison results of LBP and existing SOTA methods on Pascal VOC test set, COCO validation set and Object365 validation
set with the model being trained on OV-LVIS. Specifically, § indicates those results reported from DetPro [1], while ‡ indicates the model
trained using learnable prompt templates, proposed by DetPro [1].
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Figure 4. Visualizations of representative proposals for three background underlying categories estimated during training. They illustrate
the potential conceptual overlaps between those background underlying categories and novel categories during inference on OV-COCO.

the cosine exponential score s(w(x), tc′) by multiplying it
with a shrinking factor, namely 1−

∑
c′′∈Cu

P (c′′|x, c′), to
alleviate this issue. Notably, the contextual embeddings of
c′ ∈ CO closer to those of novel categories from Cu exhibit
a smaller shrinking factor, demonstrating the effectiveness
of our IPR module.

Additionally, compared to conventional designs [3, 11]
on background interpretation, Figure 5 showcases more rep-
resentation space diversities, conducted by the contextual
embeddings of the estimated background underlying cate-
gories, further emphasizing the superiority of our LBP ap-
proach.

4. Choices of Hyper-parameters
To be consistent with VL-PLM [12], we set θ = 0.95 and
τ = 0.02 in all experimental cases. In this section, we ana-
lyze the choices of other hyper-parameters used in the pro-
posed approach, including na, γ and λbg .
Choice of na. To determine na, we compared model per-
formance under different na values on OV-COCO, as out-
lined in Table 7. Here, na = 10 represents our default
setting, acting as the baseline among its variants. When

na APn
50 APb

50 AP50

0 37.5 58.5 53.0
10 37.8 58.7 53.2
20 37.7 58.7 53.2

Table 7. Ablation study results of our LBP approach under differ-
ent na values on OV-COCO

γ APn
50 APb

50 AP50

0.01 37.6 58.8 53.2
0.02 37.8 58.7 53.2
0.05 37.5 58.7 53.1

Table 8. Ablation study results of our LBP approach under differ-
ent γ values on OV-COCO.

na = 0, indicating no expansion of estimated background
categories, the model’s performance decreased by 0.3% in
APn

50 and 0.5% in APb
50 compared to the baseline. This

vividly demonstrates the effectiveness of our proposed strat-
egy to expand estimated background categories. On the
other hand, increasing na to 20 results in a 0.1% decrease in
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Figure 5. Visualization of the distributions of contextual embed-
dings of base categories Cb, novel categories Cu, and background
underlying categories CO in OV-COCO task. Here, we harness the
magnitude of the shrinking factor, i.e., (1−

∑
c′′∈Cu

P (c′′|x, c′))
in Eq. (18), to showcase the semantic similarity or conceptual
overlap between estimated background categories and inference
novel categories. The color bar represents the relationships be-
tween (1−

∑
c′′∈Cu

P (c′′|x, c′)) for each c′ ∈ CO and the shades
of blue, where darker shades indicate lower degrees of conceptual
overlaps and vice versa.

λbg APn
50 APb

50 AP50

0.01 37.4 58.9 53.3
0.05 37.8 58.7 53.2
0.10 37.8 58.6 53.1

Table 9. Ablation study results of our LBP approach under differ-
ent λbg values on OV-COCO.

performance in APn
50 compared to the baseline, suggesting

that a larger na may do harm to further improve the perfor-
mance of the model.

Choice of γ. Table 8 illustrates the detector performance of
our LBP approach under different γ values. The results in-
dicate that our method is not overly sensitive to the choice
of γ. Setting γ to 0.01 or 0.05, as opposed to the default
0.02, only leads to a slight decrease in the detection perfor-
mance, w.r.t. novel categories.

Choice of λbg . To better select λbg , we present its perfor-
mance under different settings in Table 9. As illustrated,
when λbg = 0.05, the model achieves the best performance
compared to that other values of λbg . Hence, we set it as the
default and consider it the baseline among different varia-
tions. Specifically, reducing λbg to 0.01 resulted in a 0.4%
decrease in model performance in APn

50 compared to the
baseline. This indirectly indicates that setting a larger λbg

can prevent the detector from overfitting to background un-
derlying categories CO.
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