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1. Additional Results

We provide additional visualizations, including shape in-
terpolation and generation, as well as additional compar-
isons in this supplementary material. Please see https:
//kyleleey.github.io/3DFauna/ for 3D animations.

1.1. Shape Interpolation between Instances

With the predictions of our model, we can easily interpolate
between two reconstructions by interpolating the base em-
beddings ¢, instance deformations and the articulated poses
&, as illustrated in Fig. 2. Here, we first obtain the pre-
dicted base shape embeddings <;~S for each of the three input
images from the learned Semantic Bank. We then linearly
interpolate between these embeddings to produce smooth a
transition from one base shape to another, as shown in the
last row of Fig. 2. Furthermore, we can also linearly inter-
polate the predicted articulated the image features ¢ (which
is used as a condition to the instance deformation field fay)
as well as the predicted articulation parameters &, to gener-
ate smooth interpolations of between posed shapes, shown
in the middle row. These results confirm that our learned
shape space is continuous and smooth, and covers a wide
range of animal shapes.

1.2. Shape Generation from the Semantic Bank

Moreover, we can also generate new animal shapes by sam-
pling from the learned Semantic Bank, as shown in Fig. 3.
First, we visualize the base shapes captured by each of the
learned value tokens ¢} in the Semantic Bank. In the top
two rows of Fig. 3, we show 20 visualizations of these base
shapes randomly selected out of the 60 value tokens in to-
tal. We can also fuse these base shapes by linearly fusing
the value tokens ¢} with a set of random weights (with a
sum of 1), and generate the a wide variety of animal shapes,
as shown in the bottom two rows.
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Figure 1. Qualitative Comparisons against two variants of Mag-
icPony [11]. In the middle are reconstruction results of the
category-specific MagicPony model trained on individual cate-
gories. On the right are results of MagicPony trained on all cat-
egories jointly, i.e. assuming all quadrupeds belong to one single
category.

1.3. Comparisons with Prior Work

Quantitative Results for Each Category. Here, we pro-
vide the per-category performance break for the quantitative
comparisons in Tab. 1, which correspond to the aggregated
results in Tab. 1 of the main paper. On APT36K [13], we
evaluate on four categories including horse, giraffe, cow and
zebra. On Animal3D [12], we use the available three cate-
gories: horse, cow and zebra. Our pan-category model con-
sistently outperforms the MagicPony [11] baseline across
all the categories, which highlights the benefits of the joint
training of all categories. We also compare to LASSIE [14]
and Hi-LASSIE [15] quantitatively by optimizing on three
Animal3D categories individually, as each category con-
tains a small size (< 100) of images similar to the default
setup proposed in their papers.

MagicPony on All Categories. In Fig. 5 of the main pa-
per, we show that MagicPony [1 1] fail to produce plausible
3D shapes when trained in a category-specific fashion on
species with limited (< 100) number of images. Alterna-
tively, we can also train the MagicPony on our entire image
dataset of all the animal species, i.e. treating all the images
as in one single category. The results are shown in Fig. 1.
As MagicPony maintains only one single base shape for all
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Figure 2. Shape Interpolation between Instances. On the top row, we show the 3D reconstructions from three input images. On the
second and the third rows, we show the interpolation between the posed shapes and the base shapes.
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Figure 3. Shape Generation from the Learned Semantic Bank. On the top two rows, we visualize 20 base shapes generated from the

individual value tokens ¢}
10 and 60 value tokens ¢},

APT-36K
Horse Giraffe Cow  Zebra
MagicPony [?2] 0.775 0.699 0.769 0.778
Ours 0.853 0.796 0.876 0.840
Animal3D
Horse Cow  Zebra
LASSIE [14] 0.850 0.887 0.878
Hi-LASSIE [15]  0.410 0.720 0.704
MagicPony [? ] 0.835 0.895 0919
Ours 0.884 0.903 0.942

Table 1. Quantitative Comparisons on APT-36K [13] and Ani-
mal3D [12] for each category. Our method consistently performs
better than MagicPony [11], LASSIE [14] and Hi-LASSIE [15] on
all the categories.

" in the learned Semantic Bank. On the bottom two rows, we show the base shapes obtained by randomly fusing

APT-36K
Horse Giraffe Cow  Zebra
Final Model 0.853 0.796 0.876 0.840
w/o Semantic Bank 0.402 0.398 0371 0.373
Category-conditioned 0.822  0.776 0.832  0.798
w/0 Lagy 0.831 0.782 0.823 0.828
Animal3D
Horse Cow  Zebra
Final Model 0.884 0.903 0.942
w/o Semantic Bank 0.402 0.701 0.630
Category-conditioned 0.842  0.886 0.910
w/0 Lagy 0.813 0.871 0.873

Table 2. Quantitative Ablation Studies on APT-36K [13] and
Animal3D [12] for each category.



K 2 10 60 100 500
PCKO.1 0.724 0.766 0.782 0.788 0.789

Table 3. Bank Size Ablation Studies on PASCAL [1].

animal instances, which is not able to capture the wide vari-
ation of shapes of different animal species. On the con-
trary, our proposed Semantic Base Shape Bank learns vari-
ous base shapes automatically adapted to different species,
based on self-supervised image features.

1.4. Quantitative Ablation Studies

In addition to the qualitative comparisons in Fig. 6 of the
main paper, Tab. 2 shows the quantitative ablation studies
on APT-36K [13] and Animal3D [12]. As explained in
Sec. 5.3 of the paper, we follow CMR [2] and optimize a
linear mapping from our predicted vertices to the annotated
keypoints in the input view. These numerical results are
consistent with the visual comparisons in Fig. 6 of the main
paper.

We also conducted additional experiments with different
bank sizes, including K = 2, 10, 60, 100, 500, and re-
port the PCK scores on PASCAL [1] in Tab. 3. The quality
grows with K; we pick K = 60 as a good trade-off with the
computational cost.

1.5. More Visualizations from 3D-Fauna

We show more visualization results of 3D-Fauna on a wide
variety of animals in Figure 7, Figure 8 and Figure 9, in-
cluding horse, weasel, pika, koala and so on. Note that our
model produces these articulated 3D reconstructions from
just a single test image in feed-forward manner, without
even knowing the category labels of the animal species.
With the articulated pose prediction, we can also easily ani-
mate the reconstructions in 3D. More visualizations are pre-
sented at https://kyleleey.github.io/3DFauna/.

1.6. Failure Cases and Limitations

Despite promising results on a wide variety of quadruped
animals, we still recognize a few limitations of the current
method. First, we only focus on quadrupeds which share a
similar skeletal structure. Although this covers a large num-
ber animals, including most mammals as well as many rep-
tiles, amphibians and insects, the same assumption will not
hold for many other animals in nature. Jointly estimating
the skeletal structure and 3D shapes directly from raw im-
ages remains a fundamental challenge for modeling the en-
tire biodiversity. Furthermore, for some fluffy animals that
are highly deformable, like cats and squirrels, our model
still struggles to reconstruct accurate poses and 3D shapes,
as shown in Fig. 4.
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Figure 4. Failure Cases. For fluffy and highly deformable animals
in challenging poses, our model still struggles in predicting the
accurate poses and shapes.

Another failure case is the confusion of left and right
legs, when reconstructing images taken from the side view,
for instance, in the second row of Fig. 7. Since neither the
object mask nor the self-supervised features [8] can pro-
vide sufficient signals to disambiguate the legs, the model
would ultimately have to resort to the subtle appearance
cues, which still remains as a major challenge. Finally,
the current model still struggles at inferring high-fidelity
appearance in a feed-forward manner, similar to [11], and
hence, we still employ a fast test-time optimization for bet-
ter appearance reconstruction (within seconds). This is par-
tially due to the limited size of the dataset and the design of
the texture field. Leveraging powerful diffusion-based im-
age generation models [9] could provide additional signals
to train a more effective 3D appearance predictor, which we
plan to look into for future work.

2. Additional Technical Details
2.1. Modeling Articulations

In this work, we focus on quadruped animals which share a
similar quadrupedal skeleton. Here, we provide the details
for the bone instantiation on the rest-pose shape based on
a simple heuristic, the skinning model, and the additional
bone rotation constraints.

Adaptive Bone Topology. We adopt a similar quadruped
heuristic for rest-pose bone estimation as in [11]. How-
ever, unlike [11] which focuses primarily on horses, our
method needs to model a much more diverse set of ani-
mal species. Hence, we make several modifications in order
for the model to adapt to different animals automatically.
For the ‘spine’, we still use a chain of 8 bones with equal
lengths, connecting the center of the rest-pose mesh to the
two most extreme vertices along z-axis. To locate the four
feet joints, we do not rely on the four zz-quadrants as the
feet may not always land separately in those four quadrants,
for instance, for animals with a longer body. Instead, we
locate the feet based on the distribution of the vertex loca-
tions. Specifically, we first identify the vertices within the
lower 40% of the total height (y-axis). We then use the cen-
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ter of these vertices as the origin of the zz-plane and locate
the lowest vertex within each of the new quadrants as the
feet joints. For each leg, we create a chain of three bones of
equally length connecting the foot joint to the nearest joint
in the spine.

Bone Rotation Prediction. Similar to [11], the viewpoint
and bone rotations are predicted separately using differ-
ent networks. The viewpoint &; is predicted via a multi-
hypothesis mechanism, as discussed in Sec. 2.2. For the
bone rotations &». g, we first project the middle point of each
rest-pose bone onto the image using the predicted view-
point, and sample its corresponding local feature from the
feature map using bilinear interpolation. A Transformer-
based [10] network then fuses the global image feature, lo-
cal image feature, 2D and 3D joint locations as well as the
bone index, and produces the Euler angle for the rotation of
each bone. Unlike [11], we empirically find it beneficial to
add the bone index on top of other features instead of con-
catenation, which tends to encourage the model to separate
the legs with different rotation predictions.

Skinning Weights. With the estimated bone structure, each
bone b except for the root has the parent bone 7(b). Each
vertex Viys; on the shape Vi, is then associated to all the
bones by skinning weights w;; defined as:

e—dﬂ,/‘r‘8
Wip = ﬁ, Where
Dy €74/ (1)
dip = min || Vi —rJy — (1 - ")l

is the minimal distance from the vertex Vi, ; to each bone
b, defined by the rest-pose joint location J, in world coordi-
nates. The 7, is a temperature parameter set to 0.5. We then
use the linear blend skinning equation to pose the vertices:

B
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where the £* denotes the bone rotations at rest pose.

Bone Rotation Constraints. Following [11], we regular-
ize the magnitude of bone rotation predictions by Ry =
T 2522 |€]|3. In experiments, we find a common fail-
ure mode where instead of learning a reasonable shape with
appropriate leg lengths, the model tends to predict exces-
sively long legs for animals with shorter legs and bend them
away from the camera. To avoid this, we further constrain
the range of the angle predictions. Specifically, we forbid
the rotation along y-axis (side-way) and z-axis (twist) of
the lower two segments for each leg. We also set a limit to
the rotation along y-axis and z-axis of the upper segment

for each leg as (—10°, 10°). For the body bones, we further
limit the rotation along the z-axis within (—6°,6°).

2.2. Viewpoint Learning Details

Recovering the viewpoint of an object from only one in-
put image is an ill-posed problem with numerous local op-
tima in the reconstruction objective. Here, we adopt the
multi-hypothesis viewpoint prediction scheme introduced
in [11]. In detail, our viewpoint prediction network out-
puts four viewpoint rotation hypotheses Ry, € SO(3),k €
{1,2,3,4} within each of the four zz-quadrants together
with their corresponding scores . For computational effi-
ciency, we randomly sample one hypothesis at each training
iteration, and minimize the loss:

Ehyp(a'lwcrec,k) = (Uk - detaCh(Erec,k:))Qy (3)

where det ach indicates that the gradient on reconstruction
loss is detached. In this way, o essentially serves as an es-
timate of the expected reconstruction error for each hypoth-
esis k, without actually evaluating it which would otherwise
require the expensive rendering step. During inference time,
we can then take the softmax of its inverse to obtain the
probability py of each hypothesis k: pp o exp(—ox/7),
where the temperature parameter 7 controls the sharpness
of the distribution.

2.3. Mask Discriminator Details

To sample another viewpoint and render the mask for the
mask discriminator, we randomly sample an azimuth angle
and rotate the predicted viewpoint by that angle. For con-
ditioning, the detached input base embedding ¢ is concate-
nated to each pixel in the mask along the channel dimen-
sion, similar to CycleGAN [17]. In practice, we also add
a gradient penalty term in the discriminator loss following
[7, 16].

2.4. Network Architectures

We adopt the architectures in [11] except the newly intro-
duced Semantic Base Shape Bank and mask discriminator.
For the SBSM, we add a modulation layer [3, 4] to each
of the MLP layers to condition the SDF field on the base
embeddings QNS To condition the DINO field, we simply
concatenate the embedding to the input coordinates to the
network. The mask discriminator architecture is identical
to that of GIRAFFE [7], except that we set input dimension
as 129 = 1 + 128, accommodating the 1-channel mask and
the 128-channel shape embedding. We set the size of the
memory bank K = 60. In practice, to allow bank to repre-
sent categories with diverse kinds of shapes, we only fuse
the value tokens with top 10 cosine similarities.



Parameter Value/Range
Optimiser Adam
Learning rate on prior and bank 1x1073
Learning rate on others 1x107*
Number of iterations 800k
Enable articulation iteration 20k
Enable deformation iteration 500k
Mask Discriminator iterations (80k, 300k)
Batch size 6
Loss weight Ay, 10
Loss weight Aim 1
Loss weight Afeat {10, 1}
Loss weight Agix 0.01
Loss weight Ager 10
Loss weight Aux 0.2
Loss weight Anyp {50,500}
Loss weight Aagy 0.1
Image size 256 x 256
Field of view (FOV) 25°
Camera location (0,0,10)
Tetrahedral grid size 256
Initial mesh centre (0,0,0)
Translation in x- and y-axes (—0.4,0.4)
Translation in z-axis (—1.0,1.0)
Number of spine bones 8
Number of bones for each leg 3
Viewpoint hypothesis temperature 7 (0.01, 1.0)
Skinning weight temperature 7; 0.5
Ambient light intensity kq (0.0,1.0)
Diffuse light intensity kq (0.5,1.0)

Table 4. Training details and hyper-parameter settings.
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Figure 5. Data Samples. We show some samples of our train-
ing data. Each sample consists of the RGB image, automatically-
obtained segmentation mask, and the corresponding 16-channel
PCA feature map.

2.5. Hyper-Parameters and Training Schedule

The hyper-parameters and training details are listed in
Tab. 4. We train the model for 800k iterations on a sin-
gle NVIDIA A40 GPU, which takes roughly 5 days. In
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Figure 6. Species Distribution. We show the distribution of
different animal species in our training dataset, including well-
represented species with thousands of images and rare species with
less than 100 images.

particular, we set Afea=10, and Apyp=50 at the start of train-
ing. After 300k iterations we change the values to Agy=1,
Anyp=500. During the first 6k iterations, we allow the model
to explore all four viewpoint hypotheses by randomly sam-
pling the four hypotheses uniformly, and gradually decrease
the chance of random sampling to 20% while sampling the
best hypothesis for the rest 80% of the time. To save mem-
ory and computation, at each training iteration, we only feed
images of the same species in a batch, and extract one base
shape by averaging out the base embeddings. At test time,
we just directly use the shape embedding for each individ-
ual input image.

2.6. Data Pre-Processing

We use off-the-shelf segmentation models [5, 6] to obtain
the masks, crop around the objects and resize the crops to a
size of 256 x 256. For the self-supervised features [8], we
randomly choose 5k images from our dataset to compute
the Principal Component Analysis (PCA) matrix. Then we
use that matrix to run inference across all the images in our
dataset. We show some samples of different animal species
in Fig. 5. It is evident that these self-supervised image fea-
tures can provide efficient semantic correspondences across
different categories. Note that masks are only for supervi-
sion, our model takes the raw image shown on the left as
input for inference.

2.7. Species Size Distribution

We show a plot of the distribution of different species in our
dataset below, including 7 well-represented categories (red)
and 121 few-shot categories (orange). To balance the train-
ing, we duplicate the samples of few-shot categories to
match the size of the rest. Many examples in Fig. 4 of the
main paper and Fig. 7 in fact belong to the few-shot cate-
gories, such as koala, fisher and prairie dog.
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Figure 7. Single Image 3D Reconstruction. Given a single image of any quadruped animal at test time, our model reconstructs an
articulated and textured 3D mesh in a feed-forward manner without requiring category labels, which can be readily animated.
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Figure 8. Single Image 3D Reconstruction. Given a single image of any quadruped animal at test time, our model reconstructs an
articulated and textured 3D mesh in a feed-forward manner without requiring category labels, which can be readily animated.
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Figure 9. Single Image 3D Reconstruction. Given a single image of any quadruped animal at test time, our model reconstructs an
articulated and textured 3D mesh in a feed-forward manner without requiring category labels, which can be readily animated.
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