
Leveraging Predicate and Triplet Learning for Scene Graph Generation

Supplementary Material

In the supplementary material, we provide the following
contents for the proposed Dual-granularity Relation Mod-
eling (DRM) network which leverages predicate and triplet
learning for Scene Graph Generation (SGG): (1) more im-
plementation details of our method; (2) more comparison
results, including comparisons on the M@K and F@K met-
rics and comparisons with VETO+MEET [17]; (3) more
ablation studies, including the ablation on Dual-granularity
Knowledge Transfer (DKT) strategy and dual-granularity
learning; (4) hyper-parameter analysis; and (5) qualitative
visualization. We will make the code publicly available
upon acceptance of this paper.

A. Additional Implementation Details

We implement DRM using Pytorch [16] and the offi-
cial code-base Scene-Graph-Benchmark.pytorch1 with a
NVIDIA A800 GPU. In the initialization of entity repre-
sentations {vi}Ni=1 and union features {si}Ni=1, we adopt
the same strategy as VCTREE [18] and PE-Net [27], which
involves a fusion of their visual and spatial features. We
follow Xu et al. [21] to augment input images for model
training. The expect number Qi of each tail predicate in
Equation 8 is equal to the count of the head predicates with
the smallest number.

B. Additional Comparison Results

B.1. Trade-off Results between R@K and mR@K

Due to the imbalanced data distribution of Visual Genome
[7], Open Image [6], and GQA datasets [4], there is a trade-
off between Recall R@K and mean Recall mR@K metrics.
To measure the trade-offs of the scene graph generation
methods, Zheng et al. [27] introduce the Mean@K (M@K),
which averages the R@K and mR@K, while Zhang et al.
[25] propose the F@K, the harmonic mean of R@K and
mR@K. Note that these two metrics only measure the trade-
off between R and mR, and it is feasible for diverse meth-
ods, even with significant differences in R and mR, to still
arrive at the same trade-off results. Evaluating either R@K
or mR@K better aligns with the practical need to predict the
highest number of relationships or to forecast relationships
as uniformly as possible.
Visual Genome. Table 6 shows the performance of dif-
ferent methods in terms of M@50/100 and F@50/100 on
VG150. Our DRM outperforms state-of-the-art methods
at F@K measurements and DRM w/o DTK also achieves

1https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch

state-of-the-art performance at M@K. It indicates that al-
though the recall of DRM degrades, the trade-off between
the recall and the mean recall is the best in the state-of-the-
art methods.

GQA. To evaluate the generalizability of our method across
various datasets, we present the performance of M@50/100
and F@50/100 on GQA200. As shown in Table 7, DRM
outperforms all of the state-of-the-art methods at both
M@50/100 and F@50/100 metrics. These results demon-
strate that our method remains effective in dealing with re-
lation recognition, regardless of the variations of data dis-
tributions.

B.2. Comparison with VETO+MEET

The MEET [17] method assigns multiple relationships to
each subject-object pair during inference. This is in ac-
cordance with the testing protocol termed “without graph
constraint”. The setting of “without graph constraint”, as
proposed by Zellers [24], permits the output scene graph to
have multiple edges between the subject and object. Better
performance is typically achieved without the graph con-
straint since the model is allowed to make multiple guesses
for challenging relations. In the following, “ng-” denote the
No Graph Constraint variant of the metric.

As shown in Table 8, we compare our DRM with
VETO+MEET under the setting of “without graph con-
straint” on VG150 and GQA200 datasets. We have the
following observations: 1) Compared to the performance
with graph constraint, our method consistently exhibits pro-
motion without graph constraint. 2) Our proposed DRM
w/o DKT has considerably better performance compared
to VETO+MEET. More specifically, our DRM w/o DKT
outperforms VETO+MEET by an average of 11.9% and
4.9% at ng-R@100 and ng-mR@100, respectively. 3)
Based on the proposed DKT strategy, DRM significantly
outperforms VETO+MEET by 21.1%, 16.2%, 16.7% at
ng-mR@100 on three tasks of VG150 datasets. It also
surpasses VETO+MEET by 25.2%, 14.4%, 14.8% at ng-
mR@100 on three tasks of VG150 datasets.

We also present the comparison results at ng-M@50/100
and ng-F@50/100 to demonstrate the trade-off performance
under the setting of “without graph constraint”. The results
are shown in Table 9. Our DRM consistently and signif-
icantly outperforms the recent VETO+MEET in terms of
both ng-M50/100 and ng-F@50/100 metrics. These results
indicate the consistent effectiveness of our DRM under the
setting of “without graph constraint”.



Models PredCls SGCls SGDet
M@50/100 F@50/100 M@50/100 F@50/100 M@50/100 F@50/100

IMP [20]CVPR’17 36.1 / 37.5 18.6 / 19.9 21.9 / 22.5 10.6 / 11.1 15.1 / 18.3 7.2 / 9.1
VTransE [26]CVPR’17 40.2 / 41.7 24.0 / 25.6 23.4 / 24.1 13.5 / 14.3 17.4 / 20.2 8.6 / 10.4
MOTIFS [24]CVPR’18 40.3 / 41.9 23.9 / 25.6 23.6 / 24.2 13.3 / 14.0 18.8 / 21.9 9.4 / 11.5
G-RCNN [22]ECCV’18 40.9 / 42.2 26.2 / 27.4 23.0 / 24.0 14.5 / 15.2 17.8 / 19.7 9.7 / 11.0
VCTREE [18]CVPR’19 41.1 / 42.7 26.6 / 28.3 24.1 / 25.0 13.2 / 13.8 19.2 / 21.7 10.7 / 12.1
GPS-Net [12]CVPR’20 40.2 / 41.9 24.7 / 26.6 23.2 / 24.2 13.9 / 14.8 19.0 / 22.3 11.0 / 13.9
RU-Net [14]CVPR’22 - / 46.9 - / 35.9 - / 29.0 - / 21.8 - / 24.2 - / 16.8
HL-Net [13]CVPR’22 - / 45.9 - / 34.3 - / 28.5 - / 20.6 - / 23.7 - / 14.8
PE-Net(P) [27]CVPR’23 45.7 / 47.8 34.5 / 37.3 27.2 / 28.6 19.9 / 21.9 20.7 / 24.0 14.0 / 16.9
VETO [17]ICCV’23 43.5 / 45.5 33.6 / 36.0 23.4 / 24.4 16.9 / 18.0 17.8 / 20.5 12.5 / 14.6
TDE⋄ [19]CVPR’20 35.9 / 40.3 32.9 / 37.2 20.4 / 22.4 17.8 / 19.9 12.6 / 15.1 11.0 / 13.2
CogTree⋄ [23]IJCAI’21 31.0 / 32.9 30.3 / 32.4 18.3 / 19.2 17.6 / 18.7 15.2 / 17.0 13.7 / 15.4
BPL-SA⋄ [3]ICCV’21 40.2 / 42.1 37.5 / 39.5 23.3 / 24.3 21.3 / 22.4 18.3 / 21.3 17.0 / 19.7
NICE⋄ [8]CVPR’22 42.5 / 44.8 38.8 / 41.3 24.9 / 26.0 22.1 / 23.5 20.0 / 23.1 17.0 / 19.8
PPDL⋄ [11]CVPR’22 39.7 / 40.5 38.3 / 39.2 23.0 / 23.8 21.7 / 22.5 16.3 / 18.7 14.8 / 17.3
GCL⋄ [2]CVPR’22 39.4 / 41.3 39.1 / 41.1 23.5 / 24.5 23.2 / 24.2 17.6 / 20.7 17.6 / 20.6
INF⋄ [1]CVPR’23 38.1 / 42.9 33.4 / 39.4 23.4 / 25.6 20.0 / 23.0 16.7 / 19.4 13.5 / 16.3
CFA⋄ [9]ICCV’23 44.9 / 47.4 43.0 / 45.6 26.0 / 27.3 22.9 / 24.4 20.3 / 23.7 17.8 / 20.8
EICR⋄ [15]ICCV’23 45.1 / 47.2 42.8 / 45.0 27.7 / 28.6 26.0 / 27.0 21.7 / 25.2 19.9 / 23.3
BGNN [10]CVPR’21 44.8 / 47.1 40.2 / 42.8 25.9 / 27.5 20.7 / 23.1 20.9 / 24.2 15.9 / 18.6
SHA+GCL [2]CVPR’22 38.4 / 40.7 38.1 / 40.4 22.9 / 24.1 22.9 / 24.1 16.4 / 19.6 16.3 / 19.5
PE-Net [27]CVPR’23 48.2 / 50.5 42.4 / 45.0 28.6 / 29.8 24.5 / 25.8 21.6 / 24.9 17.7 / 20.5
SQUAT [5]ICCV’23 43.3 / 45.7 39.7 / 42.4 25.3 / 26.6 22.9 / 24.3 19.3 / 22.7 17.9 / 21.0
DRM w/o DKT 46.8 / 48.9 35.0 / 37.8 28.9 / 29.9 20.7 / 22.1 21.5 / 25.1 14.2 / 17.4
DRM 45.5 / 47.7 45.4 / 47.6 27.7 / 28.8 27.6 / 28.8 19.7 / 23.5 19.7 / 23.5

Table 6. Results in terms of M@K and F@K for three tasks on the VG150 dataset with graph constraints. “⋄” denotes the combination of
MOTIFS with a model-agnostic unbiasing strategy. The best and second best results under each setting are respectively marked in red and
underline blue.

Models PredCls SGCls SGDet
M@50/100 F@50/100 M@50/100 F@50/100 M@50/100 F@50/100

VTransE [26]CVPR’17 34.9 / 36.5 22.4 / 23.8 20.8 / 21.5 13.0 / 13.9 16.5 / 18.7 9.6 / 10.9
MOTIFS [24]CVPR’18 40.9 / 42.0 26.2 / 27.2 21.2 / 21.8 13.2 / 13.8 17.7 / 20.4 10.5 / 12.5
VCTREE [18]CVPR’19 40.2 / 41.6 26.3 / 27.5 21.0 / 21.6 12.8 / 13.4 17.4 / 19.7 10.6 / 12.0
SHA [2]CVPR’22 41.4 / 43.2 29.8 / 31.9 20.6 / 21.3 13.5 / 14.2 16.1 / 18.5 10.5 / 12.3
VETO [17]ICCV’23 42.9 / 44.1 31.9 / 33.1 19.5 / 20.3 13.4 / 14.1 16.6 / 18.6 11.0 / 12.7
VTransE+GCL [2]CVPR’22 33.0 / 34.9 32.8 / 34.7 19.8 / 20.5 19.2 / 20.0 15.0 / 17.2 15.0 / 17.2
MOTIFS+GCL [2]CVPR’22 40.6 / 42.2 40.2 / 41.8 20.3 / 21.1 19.8 / 20.6 17.7 / 20.3 17.6 / 20.2
VCTREE+GCL [2]CVPR’22 40.1 / 41.7 39.5 / 41.1 20.5 / 21.3 20.0 / 20.8 16.6 / 19.3 16.5 / 19.1
SHA+GCL [2]CVPR’22 41.9 / 43.6 41.8 / 43.6 21.0 / 21.8 21.0 / 21.7 16.3 / 19.0 16.2 / 18.9
DRM w/o DKT 42.5 / 43.7 28.5 / 29.7 21.8 / 22.3 11.9 / 12.3 18.8 / 21.5 11.3 / 13.5
DRM 42.6 / 44.0 42.5 / 43.9 21.6 / 22.3 21.5 / 22.2 18.8 / 21.4 18.7 / 21.3

Table 7. Results in terms of M@K and F@K for three tasks on the GQA200 dataset with graph constraints. The best and second best
results under each setting are respectively marked in red and underline blue.

C. Additional Ablation Studies

We conduct additional ablation studies to further evaluate
the effectiveness of our dual-granularity learning and DKT

strategy. We combine DKT with a recent state-of-the-art
model, PE-NET [27]. As PE-Net is only concerned with
modeling predicate features, we only transfer its predicate



Datasets Models
PredCls SGCls SGDet

ng- ng- ng- ng- ng- ng-
R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100

VG150
VETO+MEET [17]ICCV’23 74.0 / 78.9 42.0 / 52.4 41.1 / 44.0 22.3 / 27.4 28.6 / 34.0 10.6 / 13.8
DRM w/o DKT 85.8 / 92.0 42.8 / 57.1 53.6 / 56.8 24.3 / 32.1 37.4 / 43.9 13.8 / 19.1
DRM 68.1 / 80.4 62.9 / 73.5 43.2 / 50.1 37.6 / 43.6 26.1 / 33.6 25.0 / 30.5

GQA200
VETO+MEET [17]ICCV’23 73.9 / 78.3 43.3 / 50.5 34.6 / 37.2 19.7 / 22.5 26.7 / 31.0 12.1 / 16.0
DRM w/o DKT 79.6 / 85.9 44.8 / 59.4 43.1 / 46.4 17.9 / 24.1 33.1 / 38.4 13.2 / 18.6
DRM 68.5 / 78.2 65.6 / 75.7 36.6 / 41.8 32.1 / 36.9 24.4 / 30.4 26.0 / 30.8

Table 8. Comparison results with VETO+MEET on the VG150 and GQA200 datasets without graph constraint. The metrics “ng-R@K”
and “ng-mR@K” denote the No Graph Constraint Recall@K and No Graph Constraint Mean Recall@K, respectively. The best results
under each setting are respectively marked in bold.

Datasets Models
PredCls SGCls SGDet

ng- ng- ng- ng- ng- ng-
M@50/100 F@50/100 M@50/100 F@50/100 M@50/100 F@50/100

VG150
VETO+MEET [17]ICCV’23 58.0 / 65.7 53.6 / 63.0 31.7 / 35.7 28.9 / 33.8 19.6 / 23.9 15.5 / 19.6
DRM w/o DKT 64.3 / 74.6 57.1 / 70.5 39.0 / 44.5 33.4 / 41.0 25.6 / 31.5 20.2 / 26.6
DRM 65.5 / 77.0 65.4 / 76.8 40.4 / 46.9 40.2 / 46.6 25.6 / 32.1 25.5 / 32.0

GQA200
VETO+MEET [17]ICCV’23 58.6 / 64.4 54.6 / 61.4 27.2 / 29.9 25.1 / 28.0 19.4 / 23.5 16.7 / 21.1
DRM w/o DKT 62.2 / 72.7 57.3 / 70.2 30.5 / 35.3 25.3 / 31.7 23.2 / 28.5 18.9 / 25.1
DRM 67.1 / 77.0 67.0 / 76.9 34.4 / 39.4 34.2 / 39.2 25.2 / 30.6 25.2 / 30.6

Table 9. Results in terms of ng-M@K and ng-F@K for three tasks on the VG150 and GQA200 datasets without graph constraints. The
metrics “ng-M@K” and “ng-F@K” denote the No Graph Constraint Mean@K and No Graph Constraint Harmonic Mean@K, respectively.
The best results under each setting are respectively marked in bold.

Figure 5. Results in terms of Recall@100 of all predicate classes of Predicate-Only and DRM w/o DKT on the PredCls task. Predicates
are sorted according to their frequency.

knowledge from head to tail. As shown in Table 10, the
incorporation of DKT substantially boosts the performance
of PE-NET in three tasks at mR@K.

To further demonstrate the effectiveness of our method in
modeling triplet clues, we provide the R@100 performance

of our methods “predicate-only” and “DRM w/o DKT” on
each predicate. As shown in Figure 5, our method out-
performs the “predicate-only” baseline on each predicate.
We also present the performance of the Recall@100 for the
predicate “riding” and the predicate “eating” at the fine-



Figure 6. Results in terms of Recall@100 for triplets belonging to predicate “riding” of Predicate-Only and DRM w/o DKT on the PredCls
task. The terms “seen” and “unseen” represent whether the triplets appear in the training set or not, respectively.

Figure 7. Results in terms of Recall@100 for triplets belonging to predicate “eating” of Predicate-Only and DRM w/o DKT on the PredCls
task. The terms “seen” and “unseen” represent whether the triplets appear in the training set or not, respectively.

grained triplet level. The results are illustrated in Figures 6
and 7. We can observe that the performance is significantly
improved in the seen triplets, especially for <giraffe, eat-
ing, leaf> and <bird, eating, fruit>, where our method can

accurately predict multiple eating expressions that cannot
be captured using only predicates. This suggests that our
method is able to learn the triplet cues in the training, and
utilize them to reason about the relationships under specific



Models PredCls SGCls SGDet
mR@50 mR@100 mR@50 mR@100 mR@50 mR@5100

PE-Net [27]CVPR’23 31.4 33.5 18.2 19.3 12.3 14.3
PE-Net + DKT-P 44.3 48.4 24.9 27.0 15.0 17.7

Table 10. The results on three tasks of PE-Net equipped with our DKT on VG150 dataset.
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Figure 8. Scene graphs generated by our DRM w/o DKT and DRM in the PredCls Task. DRM tends to generate more precise fine-grained
relations than DRM w/o DKT, which leads to the performance degradation on R@K. The use of green and red colors indicates whether the
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Figure 9. Scene graphs generated by our DRM w/o DKT and DRM in the PredCls Task. Triplet <bear, laying on, bed> only appears once
in the VG150 training set. The use of green and red colors indicates whether the prediction matches the ground truth or not, respectively.

subject-object pairs during inference. D. Hyper-parameters analysis

We first investigate the impact of hyper-parameters τp and
τt in the Dual-granularity Constraints. The results are il-
lustrated in Table 11. The decrease in τp and τt leads to



τp τt
PredCls

R@50 R@100 mR@50 mR@100
0.1 0.1 70.1 71.9 22.6 24.9
0.2 0.1 70.2 72.1 23.3 25.6
0.3 0.1 70.1 72.0 22.5 24.9
0.2 0.2 70.2 72.0 23.0 25.3

Table 11. Hyper-parameters analysis of the temperature τp and τt.

λp λe
SGCls

R@50 R@100 mR@50 mR@100
3 0.1 43.4 44.3 13.1 14.3
3 0.2 43.9 44.8 13.3 14.5
3 0.5 44.3 45.2 13.5 14.6
3 0.8 44.2 45.1 13.0 14.2
2 0.5 44.2 45.2 12.9 14.1
3 0.5 44.3 45.2 13.5 14.6
4 0.5 44.2 45.1 13.4 14.6

Table 12. Hyper-parameters analysis of the loss weights λp and
λt.

the more compact predicate and triplet representations. We
observe that the model achieves the best performance when
τp = 0.2 and τt = 0.1, indicating a compact aggregation
of the triplet compared to the predicate. This observation
aligns with the fact that variations in triplet are significantly
smaller than those in the predicate.

During pre-training, the predicate classification loss is
much smaller than the entity classification loss due to the
long-tailed distribution of predicates. To balance the scales
between these losses, we set λp to be larger than λe. Exper-
imental results in Table 12 show that the model performs
best when λp = 3 and λe = 0.5.

E. Visualization Results
We present a visualization of the results of our DRM w/o
DKT and our DRM on the PredCls task on the VG150
dataset. The results are shown in Figure 8 and 9. As the VG
dataset is incompletely labeled, we focus our analysis only
on labeled relations in the dataset. We observe that DRM
w/o DKT can accurately predict the ground-truth relation-
ships. However, our DRM often predicts these relation-
ships differently. This difference arises from the tendency
of our DRM to predict coarse-grained relations as more pre-
cise fine-grained relations. For instance, for the subject-
object pair “tree-mountain”, DRM generates the more accu-
rate predicate “growing on” while the DRM w/o DKT pre-
dicts the coarse-grained predicate “on”. These fine-grained
predictions lead to a decrease in R@K and an increase in
mR@K. This degradation in R@K is an inevitable result
due to the large number of coarsely labeled relations in the
test dataset.
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