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6. Monocular Depth Prior

As described in Sec.3.2, we refrain from using Dmono as the
initial disparity map, and there are two main reasons. First,
Dmono, being estimated from a low-resolution image, lacks
details of the scene. Second, despite alignment, Dmono still
exhibits some scale mismatches. However, Dmono proves to
be an effective prior for updating Draw through the LSGP.
Fig. 10 and Table 4 demonstrate that the incorporation of
Dmono significantly enhances the accuracy of the initial dis-
parity map. Models without LSGP, denoted as Draw, and
those utilizing only local relations in LSGP of initialization
step, indicated as D0 (w/o Dmono), both exhibit a consider-
able decrease in performance.
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Figure 10. Illustration of depth prior. Dmono usually lacks of object
details (blue boxes) and containing scale mismatches (green boxes).
However, comparing Draw and D0, we can find that Dmono serves
as a good prior when working with LSGP.

Middlebury ETH3D
Bad2.0 AvgErr Bad1.0 AvgErr

Draw 26.8 8.719 17.5 0.999
D0 (w/o Dmono) 48.5 6.062 10.5 0.582
D0 25.3 3.834 8.7 0.513

Table 4. Comparison between Draw and D0. With the guidance
from Dmono, LoS gets a much better initial disparity.

7. Experiment Details

7.1. Data Augmentation

We adopt the data augmentation techniques introduced in
CREStereo [18] as our standard data augmentation process.
Initially, asymmetric chromatic augmentations are applied
separately to each image of a stereo pair, encompassing ad-
justments in brightness, contrast, and gamma. Subsequently,
the left image undergoes several spatial augmentations, which
include a slightly random homography transformation and a
small vertical shift (less than 2 pixels). This is followed by
random resizing and cropping to standardize the input sizes
of the stereo pairs. Lastly, to enhance the model’s capability
in handling occluded areas, a rectangular section is randomly
masked in the right image.

During the fine-tuning phase for KITTI and RVC models,
we utilize a considerably simpler augmentation strategy, as
outlined in RAFT-Stereo [20]. This change is due to the sparse
nature of the disparity ground truth in the KITTI datasets.
The process begins with the same asymmetric chromatic aug-
mentations. Then, the stereo pairs undergo random resizing
and cropping to achieve uniform input sizes. Finally, random
masking is applied to the right images.

7.2. Settings of Efficiency Evaluation

We conduct the time consumption comparison in Table 2, and
we introduce the detailed default settings of each model here.

RAFT-Stereo [20]. The validation iteration numbers are
set to 32, the correlations are sampled from a 4-level correla-
tion pyramid, and the sample radius is set to 4.

CREStereo [18]. The validation iteration numbers are set
to 20, the 2-level cascaded framework is adopted, and 2D-
1D alternative search strategy is adopted with 9 correlation
candidates.

IGEV [46]. The validation iteration numbers are set to 32,
the correlations are sampled from a 2-level CGEV pyramid,
and the sample radius is set to 4.

LoS (Ours). The validation iteration numbers N , N1, N2

are set to 10, 64, 4 respectively, and 2D-1D alternative search
strategy is adopted with 9 correlation candidates.

7.3. Settings of Challenging Areas Evaluation

We assess the performance of our model in challenging areas
using the UnrealStereo4K dataset [38] in Table 3. Below, we
provide the specifics of our experimental setup.

Datasets. There are 8 scenes in the UnrealStereo4K [38]
dataset. However, the number of samples in each scene are
not balanced. Therefore, we randomly choose 200 samples



from the dataset, allocating 25 samples from each scene, to
construct our evaluation dataset.

Mask Generation. Class 1 and class 2 masks are gen-
erated straightforwardly based on the dense disparity ground
truth. To generate the class 3 mask, we calculate the Struc-
tural Similarity Index (SSIM) between the original image and
the image shifted by one pixel. Specifically, we horizon-
tally and vertically shift the original images by one pixel
and compute SSIM values for each pixel within a 33 ×
33 patch. Pixels in textureless areas are identified where
the SSIM value exceeds 0.95. To maintain image resolu-
tion during class 3 mask generation, we employ reflection
padding. For the class 4 mask, we designate pixels with
disparity gradients exceeding 5 as belonging to edge areas,
i.e.

√
∥D(x, y)−D(x+ 1, y)∥2 + ∥D(x, y)−D(x, y + 1)∥2 ≥ 5.

8. Additional Experiments

8.1. Ablation Study

The models in Table 5 are trained with a batch size of 8 for
150k steps, and the training set consists of the BTS, Middle-
bury and ETH3D, while other settings remained the same as
Sec. 4.1.

LSGP. Table 5 demonstrates that the LSGP markedly en-
hances model performance. When LSGP is employed for ini-
tialization, updating, and refinement phases, the metric bad2.0
on the Middlebury dataset is reduced by 26.6%, 35.5%, and
7.6%, respectively (comparing models 1, 2, 3 with model 0).
Conversely, omitting LSGP from these stages results in an in-
crease in the bad2.0 metric by 5.4%, 16.7%, and 0.4% respec-
tively (comparing models 4, 5, 6 with model 10). LSGP fa-
cilitates the propagation of useful information on the basis of
GRU, and GRU in turn augments LSGP’s efficacy through the
updating of LSI. Thus, the most substantial performance gains
are attributed to the use of LSGP in disparity updating. Al-
though the improvements from LSGP in the refinement phase
are modest, we maintain this step in the pipeline due to the
efficiency and non-destructive integration of LSGP.

Loss Functions. Supervision of the LSI significantly im-
proves model performance. With Lo providing supervision
to both G and O, the enhancement in performance is more
pronounced. However, the marginal improvements offered by
Lg are attributable to its inability to fully capture structural
details, resulting in an elevated bad1.0 metric on the ETH3D
dataset. The model attains optimal performance when it is
under the combined supervision of Lo and Lg .

Iteration Steps. We conduct an ablation experiment on the
iteration steps. As shown in Table 6, increasing the iterations
of LSGP (N1 and N2) is a more effective and efficient way to
improve the model performance than increasing the iterations
of GRU (N ). However, as discussed in Sec. 4.2, due to the
lack of constraints on O in the LoS model, unlimited increas-
ing N2 may cause a rapid performance drop, see models s20

No.
LSGP Loss Middlebury ETH3D

I U R Lo Lg Bad2.0 AvgErr Bad1.0 AvgErr
0 15.84 2.66 3.40 0.29
1 ✓ ✓ ✓ 11.63 1.97 1.94 0.21
2 ✓ ✓ ✓ 10.21 1.57 1.74 0.21
3 ✓ ✓ ✓ 14.63 2.45 2.65 0.25
4 ✓ ✓ ✓ ✓ 10.17 1.57 1.73 0.21
5 ✓ ✓ ✓ ✓ 11.26 1.92 1.90 0.21
6 ✓ ✓ ✓ ✓ 9.69 1.79 1.67 0.20
7 ✓ ✓ ✓ 13.82 2.72 2.18 0.29
8 ✓ ✓ ✓ ✓ 10.68 1.79 1.70 0.20
9 ✓ ✓ ✓ ✓ 11.99 1.90 3.25 0.24
10 ✓ ✓ ✓ ✓ ✓ 9.65 1.79 1.67 0.20

Table 5. Ablation study. ‘I’ stands for LSGP in initialization step
(Sec. 3.2.2 and Fig. 3 (c)), ‘U’ stands for LSGP in disparity updating
(Sec. 3.3.1 and Fig. 3 (d)) and ‘R’ refers to LSGP used in refinement
(Sec. 3.3.2 and Fig. 3 (e)).

No. N N1 N2
ETH3D Middlebury

Bad1.0 AvgErr time Bad2.0 AvgErr time

s1 2

64‡ 4†‡

4.2 0.374 0.134 22.0 6.893 0.481
s2 5† 3.6 0.322 0.175 20.3 6.497 0.663
s3 10‡ 3.1 0.305 0.257 19.6 5.908 1.008
s4 15 3.2 0.313 0.331 19.4 5.678 1.334
s5 20 3.1 0.305 0.405 19.7 5.689 1.663
s6 25 3.2 0.311 0.482 19.9 5.765 1.995
s7 30 3.1 0.309 0.559 20.2 5.821 2.320
s8

10‡

16

4†‡

3.4 0.363 0.249 20.0 7.474 0.987
s9 32† 3.1 0.322 0.246 19.8 6.615 0.989
s10 48 3.1 0.317 0.250 19.6 6.564 0.995
s11 64‡ 3.1 0.305 0.257 19.6 5.908 1.008
s12 128 3.0 0.284 0.267 19.9 5.297 1.020
s13 192 2.9 0.277 0.280 20.2 5.057 1.037
s14 256 2.9 0.275 0.293 20.3 5.117 1.062
s15

10‡ 64‡

2 3.1 0.319 0.249 19.8 6.123 0.992
s16 4†‡ 3.1 0.305 0.257 19.6 5.908 1.008
s17 6 3.1 0.308 0.254 19.2 5.746 1.017
s18 8 3.0 0.298 0.259 19.2 5.790 1.056
s19 16 3.1 0.294 0.268 19.6 5.301 1.160
s20 24 3.3 0.298 0.284 20.5 5.196 1.258
s21 32 3.8 0.310 0.302 22.0 5.161 1.345

Table 6. Ablation Study on Iteration Steps. For N , N1 and N2, the
training settings and default test settings are indicated with † and ‡
respectively. The best results are denoted with bold.

ETH3D Middlebury KITTI 15 KITTI 12
Bad1.0 Bad2.0 Bad3.0 Bad3.0

MiDaS + scale-shift (original) 3.1 19.6 5.5 4.4
MiDaS + median 3.1 19.3 5.5 4.4
ZoeDepth + scale-shift 2.9 19.5 5.4 4.3
ZoeDepth + median 3.0 20.0 5.4 4.4

Table 7. Depth Prior Comparison with Domain Generalization Task.

and s21.
Depth Prior. For LSI initialization, we evaluate four com-

binations in Table 7. ZoeDepth [2] provides better LSI initial-
ization than MiDaS while scale-shift alignment and median
alignment achieves similar performance. However, we con-



Figure 11. Quantitative results. We show the left image, estimated disparity map and disparity gradient map for each sample.

ETH3D Middlebury KITTI 15 KITTI 12
Bad1.0 Bad2.0 Bad3.0 Bad3.0

PSMNet [8] 23.8 39.5 16.3 15.1
DSMNet [50] 6.2 21.8 6.5 6.2
CFNet [31] 5.8 28.2 5.8 4.7
RAFT-Stereo [20] 3.3 18.3 5.8 4.7
CREStereo [18] 5.5 15.3 6.7 6.7
LoS (Ours) 3.1 19.6 5.5 4.4

Table 8. Domain Generalization Results.

duct this experiment after we submitting benchmarks results,
and due to limitations specified in the benchmarks, we report
the benchmark results based on MiDaS + scale-shift in our
main paper.

8.2. Domain Generalization

We evaluate LoS’s domain generalization ability, which is to
generalize from a synthetic training dataset to unseen real-
world test datasets. We train the LoS model on only Scene-
Flow [24] with data augmentation, and test the model on
ETH3D [30], Middlebury [29], KITTI 2015 [25] and KITTI
2012 [11]. As shown in Table 8, our LoS achieves the best
overall performance, which demonstrates the robustness and
superiority of local structure guidance.

9. Visualization
We show more results on ETH3D, Middlebury, KITTI 12 and
Holopix 50k in Fig. 11. Our LoS achieves satisfying result on
cross datasets and scenes.
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