
A. Details of the Training Process
As shown in the figure below. We trained the two stages
separately to save graphics memory. The Global Diffu-
sion is trained on long music input and sparse key motions
extracted from ground truth. The output key motions of
Global Diffusion are categories in dh and ds to guide the
Local Diffusion only in the inference phase.
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Figure 1. The Training process of Lodge.

B. Details of the Hard/Soft Diffusion Guidance
We categorize the characteristic dance primitives generated
by global diffusion into hard-cue key motions dh and soft-
cue key motions ds. We employ distinct diffusion guidance
strategies for each, enabling them to guide local diffusion.

The role of dh is to guide the local diffusion in generat-
ing the initial and final segments of the dance, ensuring that
the concurrently generated dance fragments can seamlessly
concatenate into a coherent, long-form dance. Therefore,
we adopt Hard Diffusion Guidance for this purpose.

On the other hand, ds serves to provide guidance to local
diffusion. In this case, we aim for the guidance to be flex-
ible, avoiding any disruption to the coherence of the dance
generated by local diffusion. Consequently, we propose the
Soft Diffusion Guidance algorithm for ds. As illustrated in
the pseudocode below, our proposed soft diffusion operates
only for the first 1000 × (1 − s) steps, where s is a hyper-
parameter. The impact of different s values on the results is
detailed in Table 3 of the main paper.

1 import torch, librosa
2 # m is the given music feature, m.shape = [L,

35], L is the time length
3 m = m[:ln] # l = L//n, n is the output frame

number of one local diffusion
4 d_h, d_s = GlobalDiffusion(m)
5 # d_h.shape = [(l+1),8,139]; d_s.shape = [2l

,8,139]

6 d_h = d_h.reshape([(l+1)*8,139])
7 d_h = d_h[4:-4].reshape([l,8,139])
8 d_s = Mirror(d_s).reshape(4l,8,139)
9 # Get music beat index by the librosa toolkit

10 beats = librosa.beatidx(m)
11 value,mask = torch.zeros([l,n,139])
12 value[:,:4,:] = d_h[:,:4,:]
13 value[:,-4:,:] = d_h[:,-4:,:]
14 value[:, beats-4:beats+4,:] = d_s
15 mask[:,:4,:] = 1
16 mask[:,-4:,:] = 1
17 mask[:, beats-4:beats+4,:] = 1
18 def guidance_sample(m,value,mask,s):
19 d = torch.rand([l,n,139])
20 # There are 1000 diffusion steps.
21 for i in reversed(range(0, 1000)):
22 if i > 1000*(1-s):
23 # sample d from step t to step t-1
24 d = p_sample(d, m, t)
25 # The soft-cue diffusion guidance
26 value_ = q_sample(value, t - 1)
27 d = value_*mask+(1.0 - mask) * d
28 # The hard-cue diffusion guidance
29 d[:,:4] = value[:,:4]*mask[:,:4]+(1.0 -

mask[:,:4] )*d[:,:4]
30 d[:,-4:] = value[:,-4:] *mask

[:,-4:]+(1.0-mask[:,-4:])*d[:,-4:]
31 else:
32 d = p_sample(d, m, t)
33 d[:,:4] = value[:,:4]*mask[:,:4]+(1.0-

mask[:,:4])*d[:,:4]
34 d[:,-4:] = value[:,-4:]*mask[:,-4:]+(1.0-

mask[:,-4:])*d[:,-4:]
35

36 d = d.reshape([ln, 139])
37 return d

Listing 1. Pseudocode of the Hard/Soft Diffusion Guidance
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Figure 2. The inference process of Lodge.

C. Details of ds and dh

Their primary distinction lies in different purposes. The
soft-cue key motion use ds to guide Local Diffusion to fol-
low the overall choreographic patterns and increase motion



expressiveness. While the primarily purpose of hard-cue
key motion dh is to support parallel generation. Both ds

and dh are 8-frame key motions generated by Global Dif-
fusion. dh operates at the beginning and end of Local Dif-
fusion, employing hard diffusion guidance to ensure strict
consistency with the initial and final frames of the generated
motion, thereby supporting parallel generation. Meanwhile,
ds operates in the middle of Local Diffusion, serving as a
soft cue to improve the dance quality.

D. Additional Ablation Studies (tested on the
FineDance dataset)

D.1. The Characteristic Dance Primitives

To reduce the computational load of Global Diffusion and
to convey global choreography patterns effectively, we pro-
pose the Characteristic Dance Primitives. These primi-
tives are dimensionalized as (l′, 8, 139), where l′ represents
the number of dance primitives, ‘8’ denotes the temporal
dimension encompassing a continuous sequence of eight
frames, and ‘139’ corresponds to the dimensions of the mo-
tion feature. However, it is feasible to configure Dance
Primitives as discrete frames. Therefore, we conducted a
four-fold temporal downsampling of the ground truth dance,
which is utilized to train the Global Diffusion for generating
discrete dance primitives. To evaluate the relative efficacy
of these methodologies, we conduct ablation experiments
on the dance primitives as Table 1.

Method FIDk ↓ Divk ↑ BAS ↑

Ground Truth / 9.73 0.2120

Discrete 55.17 5.44 0.1969
Continuous 45.56 6.75 0.2397

Table 1. Ablation study of the characteristic dance primitives.
‘Discrete’ means the dance is generated by the guidance of dis-
crete dance primitives, ‘Continuous’ means the dance is generated
by the guidance of continuous dance primitives

The generated motion guided by discrete dance primi-
tives often results in incoherence, primarily due to the lack
of velocity information. This issue is reflected in the in-
creased values of the FIDk[2, 4] as shown in Table 1. Fur-
thermore, the guidance provided by these discrete dance
primitives disrupts the beat consistency between music and
dance, which consequently leads to a significant decline in
the Beat Alignment Score (BAS)[2].

D.2. Ablation Studies of the Hyper-parameter N
and n

As described in Section 3.2 of the main paper, N represents
the temporal receptive field of the Global Diffusion. The

length of global music feature input into Global Diffusion
is N . Meanwhile, n denotes the frame number of dance
generated by the Local Diffusion.

In this part, we investigate the impact of different N and
n. Thanks to our parallel architecture, Lodge can directly
generate dance with ln frames, where l is a positive integer.
The primary objective of these ablation experiments is to
explore how different values affect dance performance.

N n FIDk ↓ Divk ↑ BAS ↑

1024 512 61.66 8.14 0.1864
1024 256 45.56 6.75 0.2397
1024 128 45.86 5.54 0.2212
512 256 59.72 5.30 0.2182
512 128 46.74 5.76 0.2124

Table 2. Ablation study of the hyper-parameter N and n.

As shown in Table 2, when n is 512, the quality of mo-
tion, as measured by FIDk, deteriorates significantly due
to the network’s limited capability in modeling long se-
quences. This also results in a substantial increase in the
cost of training Local Diffusion. Comparing cases where
n is 128 and 256, we observe only a marginal difference
in FIDk. However, crucially, we find that maintaining co-
herence at this value requires frequent incorporation of dh
within the Hard Diffusion Guidance. Such regular interven-
tion tends to disrupt the overall dance structure. Therefore,
we ultimately set n as 256.

Comparing the second and fourth rows, it’s evident that
when N is set to 1024, all metrics show improved perfor-
mance. Additionally, a larger N enables more comprehen-
sive modeling of the global dependencies between music
and dance. Therefore, we ultimately set N as 1024.

E. Visualization Results

We strongly wish you to watch the video in our project page
for more details. We conducted comparisons with state-
of-the-art dance algorithms, including FACT[2], MNET[1],
Bailando[4], and EDGE[5]. Both FACT and MNET are
models based on the Transformer and autoregressive archi-
tecture. They encounter significant motion freezing issues
during long-duration generation. After several seconds,
their motion tends to freeze. Bailando is a model designed
based on VQ-VAE[6] and GPT[3]. Its primary limitation
lies in the encoding capacity of VQ-VAE, which restricts
the network’s ability to produce complex dance movements.
EDGE is a model based on Diffusion and serves as the back-
bone of this study. Its main issue is the lack of learning
global choreography patterns, resulting in noticeable inco-
herence at the joints and a relative monotony in the move-
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Figure 3. Compare with the SOTAs.

ments. Our method, benefiting from the Coarse-to-Fine ar-
chitecture, along with the Characteristic Dance Primitives
and the Foot Refine Block, is capable of generating coher-
ent, high-quality, and expressive dance sequences.
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