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Figure 1. The visualizations of the occurrence statistics of adjacent pixel pairs in noisy images, intermediate features, and denoised images,
which are tested on the BSD68 dataset [16] at a noise level of 25 using SPF-LUT. Noisy Image: the input image of SPF-LUT. 1st stage
feature and 2nd stage feature: the feature maps output by intermediate LUT groups in SPF-LUT. Denoised Image: the output of SPF-LUT.

In this supplement material, we include the following
sections:
• additional analysis on the diagonal-dominance property

(Sec. 1),
• more implementation details of SPF-LUT (Sec. 2),
• partial compression of LUT-based methods (Sec. 3),
• comparison with SPLUT (Sec. 4),
• comparison with an alternative solution (Sec. 5),
• efficiency evaluation of DFC framework and discussion

on deployment of LUTs (Sec. 6),
• additional results of image restoration (Sec. 7).

1. Additional Analysis on the Diagonal-
Dominance Property

We make an additional analysis by collecting retrieval
statistics on feature maps output by intermediate LUT
groups of SPF-LUT for grayscale image denoising. First,

*Corresponding author.

we obtain the feature maps outputted by intermediate LUT
groups of SPF-LUT on the BSD68 dataset at a noise level
of 25. Then, we count the occurrence frequency of pairs
of two spatially adjacent pixels, which is the occurrence
frequency of coordinate indexes of LUTs in the next LUT
group. As shown in Fig. 1, the occurrence frequency of ad-
jacent pixel pairs on input images (Noisy Image), features
(1st stage feature and 2nd stage feature), and output im-
ages (Denoised Image) all exhibit a diagonal distribution.
These results show that not only low-quality data but also
intermediate features learned by cascaded LUTs follow the
diagonal-dominance property. Furthermore, the change in
the diagonal distribution provides another interesting per-
spective for us to understand the denoising process. The
wide width of the diagonal distribution on Noisy Image is
caused by noise points. The denoising process narrows the
width of the diagonal distribution on 1st stage feature and
2nd stage feature, and presents an extremely narrow diago-
nal distribution in the final Denoised Image. Thus, the grad-
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Figure 2. The architecture of SPF-LUT, where the cLUT denotes
a channel-wise LUT, and r means the scaling factor.
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Figure 3. Channel-wise LUT with four dimensions of index. Sim-
ilar to color-to-color LUTs [27], a channel-wise LUT performs
channel-wise indexing by using pixels across different channels as
indexes.

ually decreasing width of the diagonal distribution means
that the noise points are gradually removed, and the clear
image is gradually restored.
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Figure 4. The visualization of the occurrence statistics of pixel
pairs across the second channel and third channel of the inter-
mediate four-channel features, which are obtained on the BSD68
dataset [16] for grayscale image denosing. The darker color means
a higher occurrence frequency.

2. More Details about SPF-LUT
The detailed architecture of SPF-LUT for super-resolution
is shown in Fig. 2. In the first three LUT groups, each
LUT group outputs two-channel feature maps, which are
split into two parts. One part is left for concatenation, and
the other part is fed to the next LUT group. The fourth
LUT group only outputs a feature map with one channel.
Then, the concatenated four-channel feature map is fed into
a channel-wise LUT, as illustrated in Fig. 3, and a four-
channel output is obtained. We use one LUT group for each
channel of the four-channel feature and average the feature
maps outputted by these four LUT groups together to ob-
tain a feature with r ∗ r channels, where r is the scaling
factor. Finally, the r2-channel feature is fed to a PixelShuf-
fle layer [20] to obtain a high-resolution (HR) result. We
adapt the proposed SPF-LUT to denoising, deblocking, and
deblurring by removing the PixelShuffle layer of the archi-
tecture in Fig. 2.

In order to take the channel-wise LUT into account when
calculating the compression ratio (CR) of SPF-LUT, we col-
lect the occurrence frequency of pixel pairs across the sec-
ond channel and the third channel of the input features of the
channel-wise LUT. As shown in Fig. 4, the occurrence fre-
quency of pixel pairs across channels violates the diagonal-
dominance property. Thus, the channel-wise LUT is not
compressed by DFC. CR of SPF-LUT is calculated as

CR =
SDFC + Schannel

S
, (1)

where SDFC is the storage size of compressed spatial-wise



Table 1. Quantitative comparison of PSNR and SSIM on standard benchmark datasets for ×4 super-resolution tasks between the original
version of RCLUT [14] and the compressed version using DFC.

Storage Size Set5 Set14 BSDS100 Urban100 Manga109

RCLUT [14] 1.513MB 30.61/0.8652 27.55/0.7539 26.84/0.7111 24.40/0.7174 27.78/0.8603
RCLUT +DFC 0.200MB 30.54/0.8634 27.50/0.7512 26.80/0.7087 24.35/0.7153 27.66/0.8583

Table 2. Quantitative comparison of PSNR and SSIM on standard benchmark datasets for ×4 super-resolution tasks between SPLUT [15]
and SPF-LUT.

Storage Size Set5 Set14 BSDS100 Urban100 Manga109

SPLUT-L [15] 18.000MB 30.52/0.8631 27.54/0.7520 26.87/0.7091 24.46/0.7191 27.70/0.8581
SPLUT-S [15] 5.500MB 30.01/0.8520 27.20/0.7430 26.68/0.7020 24.13/0.7060 27.00/0.8430
SPF-LUT 17.284MB 31.11/0.8764 27.92/0.7640 27.10/0.7197 24.87/0.7378 28.68/0.8796
SPF-LUT +DFC 2.018MB 31.05/0.8755 27.88/0.7632 27.08/0.7190 24.81/0.7357 28.58/0.8779

Table 3. Comparison with the direct subsampling at a similar com-
pression ratio, where the direct subsampling is denoted as +DS,
and “ft.” means the LUT-aware finetuning strategy.

Method
Set5 Set14

PSNR SSIM PSNR SSIM

SPF-LUT 31.11 0.8764 27.92 0.7640
SPF-LUT +DFC w/o ft. 30.49 0.8646 27.55 0.7543
SPF-LUT +DFC w/ ft. 31.05 0.8755 27.88 0.7632
SPF-LUT +DS w/o ft. 30.06 0.8471 27.37 0.7455
SPF-LUT +DS w/ ft. 30.95 0.8733 27.80 0.7613

LUTs in SPF-LUT, S is the storage size of the uncom-
pressed original SPF-LUT, and Schannel is the storage size
of the uncompressed channel-wise LUT. In our SPF-LUT,
the storage size of the channel-wise LUT is only 0.319MB.
Thus, a channel-wise LUT is only a small fraction of all
LUTs in the SPF-LUT, and the storage size of a channel-
wise LUT only accounts for 1.8% (0.319MB/17.284MB)
of the total storage size of the SPF-LUT for ×4 super-
resolution.

3. Partial Compression of LUT-based Methods

We further evaluate the performance of using our DFC to
compress the latest LUT-based model, RCLUT [14]. The
RCLUT introduces a RC module to increase the receptive
field size. The RC module comprises n2 1-dimensional
(1D) LUTs, with each 1D LUT dedicated to processing each
individual pixel within an n × n image patch. Ultimately,
the output values from all the 1D LUTs are averaged to pro-
duce the output of the RC module. The RCLUT employs
a parallel and cascading structure, similar to MuLUT [11],
to leverage the capabilities of multiple spatial-wise LUTs,
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Figure 5. Visualization of the magnitude of value changes of SPF-
LUT +DS after LUT-aware finetuning strategy. The change in val-
ues after fine-tuning is also distributed diagonally.

positioning RC modules ahead of each spatial-wise LUT.
Since 1D LUTs in the RC module disrupt the interac-

tion between adjacent pixels, resulting in the absence of the
diagonal-dominance property of 1D LUTs, here we only ap-
ply our DFC to spatial-wise LUTs with patches of size 2×2
as inputs in RCLUT. We report the PSNR and SSIM results
for ×4 super-resolution on the five standard benchmarks in
Table 1. As shown in Table 1, RCLUT +DFC can achieve
comparable performance to the original uncompressed ver-
sion, which validates that our DFC framework can be ap-
plied to more spatial-wise LUT-based models.

4. Comparison with SPLUT
SPLUT [15] is another baseline model different from SR-
LUT [10] and MuLUT [11], which processes different im-



Table 4. The comparison of efficiency and performance between different models. We evaluate the energy cost and peak memory of
generating 1280× 720 high-quality images with ×4 super resolution. We also report the storage size of the libraries that different models
are dependent on. The PSNR is measured on standard benchmark datasets for ×4 super-resolution.

Method
int8
Add.

int8
Mul.

int32
Add.

int32
Mul.

float32
Add.

float32
Mul.

Energy
Cost(pJ)

Peak
Memory

Dependent Library
Size

Set14
PSNR

BSDS100
PSNR

Classical Bicubic 14.7M 14.7M 67.8M 2.3MB numpy: 16.5MB 26.00 25.96

LUT

SR-LUT [10] 15.8M 0.1M 28.6M 22.3M 72.5M 47.0MB numpy: 16.5MB 27.18 26.59
SR-LUT [10] +DFC 17.2M 0.1M 28.6M 22.3M 72.5M 40.5MB numpy: 16.5MB 27.14 26.57
MuLUT [11] 53.3M 0.2M 93.0M 71.8M 233.6M 50.7MB numpy: 16.5MB 27.60 26.86
MuLUT [11] +DFC 61.6M 0.2M 93.0M 71.8M 233.9M 41.3MB numpy: 16.5MB 27.56 26.83
SPF-LUT 222.9M 1.0M 390.1M 301.5M 980.5M 65.4MB numpy: 16.5MB 27.92 27.10
SPF-LUT +DFC 256.1M 1.0M 390.1M 301.5M 981.5M 45.9MB numpy: 16.5MB 27.88 27.08

DNN RRDB [25] 1.0T 1.0T 4.7T 843.6MB torch(CPU): 186.3MB 28.88 27.82
EDSR [13] 2.9T 2.9T 13.3T 2.3GB torch(CPU): 186.3MB 28.80 27.71

Table 5. Operational energy costs for different data types.

Operation int8 int32 float16 float32

Add.(pJ) 0.03 0.1 0.4 0.9
Mult.(pJ) 0.2 3.1 1.1 3.7

age information separately with a series-parallel structure.
Here, we report the comparison of SPF-LUT and SPF-
LUT +DFC with the two versions of SPLUT in Table 2.
As listed in Table 2, with our DFC, SPF-LUT shows sig-
nificant advantages in the performance-storage trade-off.
For example, SPF-LUT +DFC outperforms SPLUT-S (the
lightweight version of SPLUT) by 1.58dB on Manga109,
with 60% less storage.

5. Comparison with an Alternative Solution
An alternative way to compress spatial-wise LUTs is to di-
rectly subsample the LUTs at a large sampling interval. We
use direct subsampling to compress SPF-LUT at a compres-
sion ratio of about 10%, which is denoted as SPF-LUT +DS,
and compare it with SPF-LUT +DFC under two settings,
with and without LUT-aware finetuning. The two settings
are denoted as w/o ft. and w/ ft. in Table 3, respectively.

As observed, our DFC framework obtains superior per-
formance over the +DS solution in both settings, show-
ing that the information along the diagonal of spatial-wise
LUTs plays a key role in maintaining performance. Further-
more, it is worth noting that the LUT-aware finetuning strat-
egy reduces the performance gap between SPF-LUT +DFC
and SPF-LUT +DS. Without finetuning, the difference be-
tween the two models is 0.45dB on the Set5 ×4 dataset,
while the difference is about 0.1dB with LUT-aware fine-
tuning. Here, we visualize the value changes of spatial-
wise LUTs in SPF-LUT +DS after LUT-aware finetuning.
As shown in Fig. 5, the dark color means the significant
value change after LUT-aware finetuning, which is mainly
distributed along the diagonal, similar to the diagonal-

dominance property we observe in this paper. Thus, the
LUT-aware finetuning strategy obtains performance gains
by mainly finetuning the values cached in the diagonal LUT
cells, which is consistent with our observation.

6. Efficiency Evaluation of DFC Framework
and Discussion on Deployment of LUTs

Following MuLUT [11], we conduct an assessment to esti-
mate the theoretical energy costs [21] associated with com-
pressed LUT models for super-resolution tasks, and we also
include Bicubic, RRDB [25], and EDSR [13] as references.
As listed in Table 4, the results highlight a crucial distinc-
tion. LUT-based models perform only integer-type opera-
tions, affording them a significant computational efficiency
edge over DNN models. Notably, our proposed DFC frame-
work sustains this advantage and reduces the storage size.
The costs associated with operational energy, segregated
by data types, are itemized in Table 5, derived from liter-
atures [8, 22].

The peak memory is measured with memray1 on CPU.
As listed in Table 4, LUT-based models have lower peak
memory than DNN models at runtime, implying less run-
time resource requirements for the LUT-based models.

The storage size of the dependent library listed in Ta-
ble 4 indicates the enormous additional storage overhead
required by DNN models compared to LUT models.

Moreover, we also have a discussion on the deployment
advantages of the LUT models. The deployment compari-
son between DNNs and LUTs is important and has been ex-
tensively discussed in terms of running time and energy cost
in existing works [10, 11, 15]. Here, we provide another im-
plementation perspective. As listed in Table 6, we report the
comparison of efficiency and performance between SPF-
LUT and a lightweight DNN model ARCNN [5, 26] in the
image deblocking task. Both ARCNN and its fast version
require more energy, running memory, and dependent li-
brary size. For mobile and other edge devices, LUT models

1https://github.com/bloomberg/memray

https://github.com/bloomberg/memray


Table 6. The comparison of efficiency and performance between SPF-LUT and ARCNN [5, 26] for image deblocking under a quality
factor of 10. We evaluate the energy cost and peak memory of generating 320× 180 high-quality images.

Method
Storage

Size
Energy

Cost (pJ)
Peak

Memory
Dependent Library

Size
LIVE1
PSNR-B

LUT SPF-LUT 3017.849KB 160.6M 19.8MB numpy: 16.5MB 28.62
SPF-LUT +DFC 595.926KB 161.6M 16.7MB numpy: 16.5MB 28.61

DNN ARCNN [5] 415.812KB 28921.9M 116.7MB torch(CPU): 186.3MB 28.77
Fast-ARCNN [26] 232.761KB 3948.7M 84.1MB torch(CPU): 186.3MB 28.65

Table 7. Quantitative comparison of PSNR/SSIM on standard benchmark datasets for ×2 and ×3 super-resolution. The gray background
means LUT-based models are compressed using DFC. For LUT-based models, the best and second-best results are depicted with red and
blue, respectively.

PSNR/SSIM Method Sacle Set5 Set14 BSDS100 Urban100 Manga109

Classical

Bicubic ×2 33.63/0.9292 30.23/0.8681 29.53/0.8421 26.86/0.8394 30.78/0.9338
NE + LLE [2] ×2 35.79/0.9491 31.82/0.8996 30.77/0.8787 28.48/0.8803 33.95/0.9590
ANR [23] ×2 35.85/0.9500 31.86/0.9006 30.82/0.8800 28.49/0.8807 33.94/0.9597
A+ [24] ×2 36.57/0.9545 32.34/0.9056 31.21/0.8860 29.23/0.8938 35.32/0.9670

LUT

SR-LUT [10] ×2 35.74/0.9489 31.87/0.8978 30.74/0.8767 28.65/0.8808 34.02/0.9598
SR-LUT [10] +DFC ×2 35.64/0.9482 31.81/0.8970 30.69/0.8759 28.57/0.8794 33.98/0.9592
MuLUT [11] ×2 36.65/0.9541 32.49/0.9065 31.23/0.8865 29.31/0.8910 35.78/0.9674
MuLUT [11] +DFC ×2 36.53/0.9533 32.38/0.9054 31.16/0.8853 29.18/0.8889 35.56/0.9662
SPF-LUT ×2 37.08/0.9562 32.79/0.9095 31.48/0.8902 29.76/0.8984 36.50/0.9706
SPF-LUT +DFC ×2 37.06/0.9563 32.75/0.9092 31.45/0.8901 29.70/0.8978 36.42/0.9703

DNN EDSR [13] ×2 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773
RCAN [31] ×2 38.30/0.9617 34.14/0.9235 32.41/0.9025 33.17/0.9377 39.60/0.9791

Classical

Bicubic ×3 30.40/0.8678 27.55/0.7736 27.20/0.7379 24.45/0.7343 26.94/0.8554
NE + LLE [2] ×3 31.87/0.8958 28.64/0.8085 27.92/0.7727 25.41/0.7755 28.70/0.8889
ANR [23] ×3 31.95/0.8970 28.69/0.8102 27.96/0.7745 25.45/0.7768 28.78/0.8900
A+ [24] ×3 32.63/0.9090 29.16/0.8190 28.28/0.7832 26.04/0.7974 29.90/0.9099

LUT

SR-LUT [10] ×3 32.10/0.9002 28.92/0.8102 27.99/0.7726 25.66/0.7808 29.54/0.9024
SR-LUT [10] +DFC ×3 32.02/0.8988 28.86/0.8091 27.95/0.7717 25.60/0.7787 29.45/0.9009
MuLUT [11] ×3 32.75/0.9089 29.34/0.8215 28.31/0.7841 26.10/0.7945 30.72/0.9161
MuLUT [11] +DFC ×3 32.75/0.9088 29.31/0.8210 28.28/0.7835 26.06/0.7933 30.67/0.9153
SPF-LUT ×3 33.37/0.9168 29.70/0.8290 28.59/0.7919 26.64/0.8122 31.65/0.9279
SPF-LUT +DFC ×3 33.33/0.9162 29.66/0.8287 28.57/0.7917 26.59/0.8110 31.57/0.9272

DNN EDSR [13] ×3 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476
RCAN [31] ×3 34.78/0.9299 30.63/0.8477 29.33/0.8107 29.02/0.8695 34.58/0.9502

can be implemented with standard JAVA, while Pytorch An-
droid alone takes ∼90MB2, let alone the possible require-
ment of GPUs. From the perspective of energy costs, peak
memory, and dependent library size, LUT models are ad-
vantageous over DNNs for deployment on resource-limited
edge devices.

In summary, the DFC framework effectively preserves
the computational efficiency inherent to original LUT mod-
els, enabling LUT models to be more practical by releasing

2https : / / oss . sonatype . org / #nexus - search ;
quick˜pytorch_android

their storage requirements.

7. Additional Results of Image Restoration
Image Super-Resolution. We report the quantitative re-
sults for ×2 and ×3 super-resolution on five standard
benchmarks [1, 9, 16, 17, 28] in Table 7. Since the
RRDB [25] has no reference versions for ×2 and ×3 super-
resolution tasks, following SR-LUT [10] and MuLUT [11],
we report the results of RCAN [31] instead of RRDB. The
visual comparisons of ×2 and ×3 super-resolution tasks on
standard benchmarks are provided in Fig. 6 and Fig. 7, re-

https://oss.sonatype.org/#nexus-search;quick~pytorch_android
https://oss.sonatype.org/#nexus-search;quick~pytorch_android


Table 8. The comparison of PSNR on standard benchmark datasets
for grayscale image denoising at noise levels of 25 and 50. The
gray background means LUT-based models are compressed us-

ing DFC. For LUT-based models, the best and second-best results
are depicted with red and blue, respectively.

PSNR Method
Set12 BSD68

25 50 25 50

LUT

SR-LUT [10] 27.19 22.62 26.85 22.39
SR-LUT [10] +DFC 27.16 22.59 26.66 22.36
MuLUT [11] 28.94 25.46 28.18 24.97
MuLUT [11] +DFC 28.72 25.17 27.90 24.68
SPF-LUT 29.49 26.14 28.55 25.55
SPF-LUT +DFC 29.43 26.07 28.50 25.50

Classical
BM3D [4] 29.97 26.72 28.57 25.62
WNNM [7] 30.26 27.05 28.83 25.87
TNRD [3] 30.06 26.81 28.92 25.97

DNN
DnCNN [29] 30.44 27.18 29.23 26.23
FFDNet [30] 30.43 27.32 29.19 26.29
SwinIR [12] 31.01 27.91 29.50 26.58

spectively. We also provide more visual results for the ×4
super-resolution task in Fig. 8.
Image Denoising. We report the quantitative results for
grayscale image denoising at a noise level of 25 and 50 on
standard benchmarks [16, 29] in Table 8. We provide more
visual results for the noise level of 15 in Fig. 9. The visual
comparisons for the noise levels of 25 and 50 on standard
benchmarks are provided in Fig. 10 and Fig. 11.
Image Deblocking. Image deblocking is an image process-
ing task that aims to reduce or eliminate blocking artifacts
in images caused by compression algorithms such as JPEG.
These artifacts typically appear in edge and texture regions
of the image, leading to a degradation in visual quality. The
goal of deblocking is to reduce or eliminate these artifacts
through filtering or other processing of the image, resulting
in an improvement in the visual quality of the image. We
report the quantitative results for image deblocking under
different quality factors (20, 30, and 40) on standard bench-
marks [6, 19] in Table 9. The metric is PSNR-B. The vi-
sual comparisons for the quality factor of 10, 20, and 30 on
standard benchmarks are provided in Fig. 12, Fig. 13, and
Fig. 14, respectively.
Image Deblurring. Image deblurring refers to the process
of restoring a blurred image. Blurring may be caused by
motion blur due to camera or handheld device movement,
as well as out-of-focus blur resulting from imperfect lenses
or incorrect focus distances. The goal of image deblurring
is to restore the clarity and details of the original image,
making it more clear and recognizable. For image deblur-
ring, we train the LUT-based models and evaluate them on
the GoPro dataset [18]. The GoPro dataset is a large-scale
dataset created to simulate real-world blur by frame aver-

Table 9. The comparison of PSNR-B on standard benchmark
datasets for image deblocking under different quality factors (QF).
The gray background means LUT-based models are compressed
using DFC. For LUT-based models, the best and second-best re-
sults are depicted with red and blue, respectively.

Method QF Classic5 LIVE1

LUT

SR-LUT [10] 20 29.54 29.74
SR-LUT [10] +DFC 20 29.48 29.68
MuLUT [11] 20 30.30 30.52
MuLUT [11] +DFC 20 30.22 30.38
SPF-LUT 20 30.71 30.86
SPF-LUT +DFC 20 30.65 30.80

Classical JPEG 20 27.50 27.56
SA-DCT [6] 20 29.75 29.82

DNN ARCNN [5] 20 30.59 30.79
SwinIR [12] 20 31.99 31.70

LUT

SR-LUT [10] 30 30.80 30.99
SR-LUT [10] +DFC 30 30.77 30.94
MuLUT [11] 30 31.57 31.79
MuLUT [11] +DFC 30 31.36 31.58
SPF-LUT 30 31.96 32.11
SPF-LUT +DFC 30 31.95 32.10

Classical JPEG 30 28.94 28.92
SA-DCT [6] 30 30.82 30.91

DNN ARCNN [5] 30 31.98 32.38
SwinIR [12] 30 33.03 33.01

LUT

SR-LUT [10] 40 31.71 32.00
SR-LUT [10] +DFC 40 31.62 31.91
MuLUT [11] 40 32.32 32.66
MuLUT [11] +DFC 40 32.16 32.51
SPF-LUT 40 32.83 33.08
SPF-LUT +DFC 40 32.75 33.02

Classical JPEG 40 29.92 29.95
SA-DCT [6] 40 31.58 31.77

DNN ARCNN [5] 40 32.79 33.14
SwinIR [12] 40 33.66 33.88

aging, which has been used to train and evaluate deep de-
blurring algorithms. The dataset is comprised of 3214 im-
age pairs, which are divided into training and test sets, with
2103 pairs and 1111 pairs, respectively. The visual compar-
isons are provided in Fig. 15.



LR SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (23.12/0.319MB) (23.76/1.195MB) (23.93/5.815MB)

GT (Urban100) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
img 067 (23.11/0.032MB) (23.63/0.120MB) (23.78/0.869MB)

LR SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (27.23/0.319MB) (28.14/1.195MB) (28.51/5.815MB)

GT (Manga109) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
LoveHina vol01 (27.22/0.032MB) (28.06/0.120MB) (28.40/0.869MB)

Figure 6. Qualitative comparison for ×2 super-resolution on standard benchmark datasets [9, 17].

LR SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (26.31/0.717MB) (27.18/2.390MB) (27.55/10.593MB)

GT (Set14) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
ppt3 (26.12/0.072MB) (27.07/0.239MB) (27.44/1.348MB)

LR SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (27.79/0.717MB) (28.33/2.390MB) (29.02/10.593MB)

GT (Urban100) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
img 035 (27.64/0.072MB) (28.27/0.239MB) (28.87/1.348MB)

Figure 7. Qualitative comparison for ×3 super-resolution on standard benchmark datasets [9, 28].

LR SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (25.03/1.274MB) (25.81/4.062MB) (26.39/17.284MB)

GT (BSDS100) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
24077 (24.92/0.128MB) (25.77/0.407MB) (26.33/2.018MB)

LR SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (31.78/1.274MB) (32.64/4.062MB) (33.43/17.284MB)

GT (Set5) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
bird (31.65/0.128MB) (32.54/0.407MB) (33.33/2.018MB)

Figure 8. Qualitative comparison for ×4 super-resolution on standard benchmark datasets [1, 16].



Noisy SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (30.65/81.563KB) (31.38/489.381KB) (31.88/3017.849KB)

GT (Set12) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
11 (30.63/8.172KB) (31.38/49.031KB) (31.80/595.926KB)

Noisy SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (30.75/81.563KB) (31.88/489.381KB) (32.66/3017.849KB)

GT (BSD68) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
test014 (30.68/8.172KB) (31.83/49.031KB) (32.52/595.926KB)

Figure 9. Qualitative comparison for grayscale image denoising at a noise level of 15 on standard benchmark datasets [16, 29].

Noisy SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (27.98/81.563KB) (30.69/489.381KB) (31.73/3017.849KB)

GT (Set12) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
02 (28.00/8.172KB) (30.53/49.031KB) (31.58/595.926KB)

Noisy SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (26.04/81.563KB) (27.35/489.381KB) (28.06/3017.849KB)

GT (BSD68) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
test011 (26.04/8.172KB) (27.09/49.031KB) (27.92/595.926KB)

Figure 10. Qualitative comparison for grayscale image denoising at a noise level of 25 on standard benchmark datasets [16, 29].

Noisy SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (22.54/81.563KB) (25.07/489.381KB) (25.78/3017.849KB)

GT (Set12) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
05 (22.52/8.172KB) (24.95/49.031KB) (25.74/595.926KB)

Noisy SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (22.19/1.274MB) (24.81/4.062MB) (25.96/17.284MB)

GT (BSD68) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
test003 (22.17/0.128MB) (24.77/0.407MB) (25.93/2.018MB)

Figure 11. Qualitative comparison for grayscale image denoising at a noise level of 50 on standard benchmark datasets [16, 29].



JPEG SR-LUT MuLUT SPF-LUT
(PSNR-B/Storage Size) (30.06/81.563KB) (30.96/489.381KB) (31.47/3017.849KB)

GT (classic5) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
lena (29.96/8.172KB) (30.92/49.031KB) (31.48/595.926KB)

JPEG SR-LUT MuLUT SPF-LUT
(PSNR-B/Storage Size) (28.09/81.563KB) (28.73/489.381KB) (29.06/3017.849KB)

GT (LIVE1) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
lighthouse3 (28.02/8.172KB) (28.77/49.031KB) (29.04/595.926KB)

Figure 12. Qualitative comparison for image deblocking under the quality factor of 10 on standard benchmark datasets [6, 19].

JPEG SR-LUT MuLUT SPF-LUT
(PSNR-B/Storage Size) (30.04/81.563KB) (30.79/489.381KB) (31.30/3017.849KB)

GT (classic5) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
boats (29.98/8.172KB) (30.80/49.031KB) (31.23/595.926KB)

JPEG SR-LUT MuLUT SPF-LUT
(PSNR-B/Storage Size) (28.23/81.563KB) (28.87/489.381KB) (29.14/3017.849KB)

GT (LIVE1) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
paintedhouse (28.21/8.172KB) (28.87/49.031KB) (29.14/595.926KB)

Figure 13. Qualitative comparison for image deblocking under the quality factor of 20 on standard benchmark datasets [6, 19].

JPEG SR-LUT MuLUT SPF-LUT
(PSNR-B/Storage Size) (31.56/81.563KB) (32.41/489.381KB) (32.62/3017.849KB)

GT (LIVE1) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
caps (31.45/8.172KB) (32.20/49.031KB) (32.63/595.926KB)

JPEG SR-LUT MuLUT SPF-LUT
(PSNR-B/Storage Size) (29.97/81.563KB) (31.19/489.381KB) (31.95/3017.849KB)

GT (LIVE1) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
monarch (29.86/8.172KB) (31.17/49.031KB) (32.00/595.926KB)

Figure 14. Qualitative comparison for image deblocking under the quality factor of 30 on standard benchmark datasets [6, 19].



Blurry SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (25.75/81.563KB) (25.83/489.381KB) (26.13/3017.849KB)

GT (GOPR0854 11 00) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
000045 (25.74/8.172KB) (25.84/49.031KB) (26.11/595.926KB)

Blurry SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (29.43/81.563KB) (29.57/489.381KB) (30.61/3017.849KB)

GT (GOPR0384 11 05) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
004008 (29.41/8.172KB) (29.55/49.031KB) (30.56/595.926KB)

Blurry SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (21.43/81.563KB) (21.43/489.381KB) (21.60/3017.849KB)

GT (GOPR0868 11 00) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
000017 (21.43/8.172KB) (21.44/49.031KB) (21.60/595.926KB)

Blurry SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (26.16/81.563KB) (26.25/489.381KB) (26.60/3017.849KB)

GT (GOPR0869 11 00) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
000015 (26.15/8.172KB) (26.26/49.031KB) (26.55/595.926KB)

Blurry SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (22.19/81.563KB) (22.26/489.381KB) (22.58/3017.849KB)

GT (GOPR0871 11 00) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
000015 (22.19/8.172KB) (22.25/49.031KB) (22.59/595.926KB)

Blurry SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (24.62/81.563KB) (24.73/489.381KB) (25.18/3017.849KB)

GT (GOPR0881 11 01) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
000201 (24.62/8.172KB) (24.72/49.031KB) (25.11/595.926KB)

Figure 15. Qualitative comparison for image deblurring on standard benchmark datasets [18].
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