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Abstract

The scarcity of annotated data has sparked signifi-
cant interest in unsupervised pre-training methods that
leverage medical reports as auxiliary signals for medi-
cal visual representation learning. However, existing re-
search overlooks the multi-granularity nature of medical
visual representation and lacks suitable contrastive learn-
ing techniques to improve the models’ generalizability
across different granularities, leading to the underutiliza-
tion of image-text information. To address this, we pro-
pose MLIP, a novel framework leveraging domain-specific
medical knowledge as guiding signals to integrate lan-
guage information into the visual domain through image-
text contrastive learning. Our model includes global con-
trastive learning with our designed divergence encoder, lo-
cal token-knowledge-patch alignment contrastive learning,
and knowledge-guided category-level contrastive learning
with expert knowledge. Experimental evaluations reveal
the efficacy of our model in enhancing transfer performance
for tasks such as image classification, object detection, and
semantic segmentation. Notably, MLIP surpasses state-of-
the-art methods even with limited annotated data, highlight-
ing the potential of multimodal pre-training in advancing
medical representation learning.1

1. Introduction
Representation learning for medical radiographs has gained
significant attention recently, owing to the availability of
abundant annotated data. Numerous approaches [20, 23,
46, 48] have employed deep learning in a supervised man-
ner to learn representations for downstream tasks. How-
ever, the acquisition of large-scale annotated data is time-

*Corresponding Author.
1Codes are available at https://github.com/gentlefress/MLIP
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Figure 1. Detailed illustration of false negatives in medi-
cal image-text. Conventional approaches consider false negative
samples as negatives that are distant from positive samples in the
lower left corner. In contrast, in the lower right corner, our pro-
posed method distinguishes false negatives from negatives, effec-
tively bringing them closer to positives.

consuming and costly. unsupervised pre-training methods
have emerged as a promising alternative. These methods,
which do not rely on annotated data, harness medical re-
ports as ancillary signals that provide targeted supervision
for visual representation learning. By incorporating lan-
guage information, these models can acquire more universal
visual representations that are transferable to downstream
tasks and capable of domain transfer.

There are three mainstream paradigms in visual repre-
sentation learning. Masked image modeling [29, 38, 60]
follows mask-and-predict paradigm, randomly masking
some patches and predicting missing information. Mul-
timodal contrastive learning [10, 32, 64, 65] conducts
embed-and-compare proxy tasks to maximize the mutual
information between medical images and reports through



image-text contrastive learning. Multi-view self-supervised
learning [9, 12, 13, 28] adopts an augment-and-compare
paradigm, where an input image is randomly transformed
into two augmented views and compare the two distinct
views in the representation space.

However, the fact that pathological features only occupy
a small part of a radiograph means that a significant por-
tion of the information may not be relevant for our analysis,
decreasing the utilization of medical image-text data. More-
over, due to the unique nature of medical image-report com-
pared to general text-image pairs, different symptoms may
correspond to the same disease, and traditional contrastive
learning will mistake samples that are not in the same batch
as negative samples even if they are very close in the se-
mantic space. In Fig 1, we purpose to differentiate between
false negative and negative samples and further reduce the
distance between false negative and positive samples.

Driven by the revelation from [33, 39, 56], we design
a knowledge-guided align-and-compare framework to cap-
ture multi-grained semantic information and to accurately
align each image’s pathology with the corresponding med-
ical term [33, 36, 37]. We introduce a knowledge-guided
medical multimodal pre-trained model, dubbed MLIP, to
explore the inherent multi-granularity cross-modal corre-
spondence for enhancing the generalizability of visual rep-
resentation. Specifically, we employ a combination of three
distinct image-text contrastive learning methods to embed
language into vision at different granularity and utilize two
proxy tasks to establish the match between vision and lan-
guage. Our model exploits multi-level correspondences be-
tween medical radiographs and reports to enhance general-
ized medical visual representation with contrastive learning.
Our approach demonstrates state-of-the-art performance in
image classification, object detection, and semantic seg-
mentation, even when working with limited annotated data.

The key contributions are summarized as follows:
• We introduce two dynamically updated divergence en-

coders for data augmentation, aiming to increase the
number of samples and thus enhance the generalization
ability of the model.

• We propose to leverage cross-modal attention-based
token-knowledge-patch alignment and incorporate con-
trastive learning to facilitate the exploration of local rep-
resentations.

• We propose a knowledge-guided prototype clustering
contrastive learning approach, which focuses on conduct-
ing contrastive learning at the category level rather than
the individual samples.

• We pre-train MLIP on the MIMIC-CXR dataset [35],
evaluating the learned representations on seven down-
stream datasets. Experimental results demonstrate the su-
periority of our model over state-of-the-art methods, even
with 1% and 10% training data.

2. Related Work

2.1. Text-guided Medical Visual Representations
Learning

Medical reports are pivotal in unsupervised medical vi-
sual representation learning, with two primary methods
dominating the field. The first method involves extracting
disease labels from radiology reports using manually de-
signed rules [34, 35], followed by pre-training image mod-
els for downstream tasks. However, defining the rules re-
quires considerable human effort and domain expertise. On
the other hand, the second method adopts image-text con-
trastive learning methods to integrate text and vision in an
unsupervised manner [20, 32, 33, 56, 64]. These methods
have been shown remarkable performance in diverse down-
stream tasks, including medical object detection [4], im-
age classification [33, 64], and semantic segmentation [64].
However, they have not effectively explored visual repre-
sentations at different granularities and rely on partial se-
mantic information.

To address these limitations, MGCA [56] proposes to
leverage multiple visual features at different granularities
during the pre-training phase, enhancing the performance
of models in downstream tasks. However, it overlooks the
challenging sample issue in medical radiology. In this work,
we propose a divergence encoder that manually updates its
parameters based on the similarity between the output fea-
tures and those of a common encoder. By increasing di-
vergence between the two encoders, we enhance feature di-
versity and train the model to discriminate among similar
samples effectively.

2.2. Knowledge-guided Pre-training

To enhance the model’s knowledge and understanding abil-
ity by leveraging a broader background, numerous vision-
and-language pre-training methods have been devised to
incorporate domain-specific knowledge. These methods
can be categorized into four distinct knowledge-guided
schemes: embedding combination [66], data structure com-
patibility [26, 42], knowledge supervision [58], and neural-
symbolic methods [2]. For instance, ERNIE-ViL [62] in-
troduces a vision and language alignment technique by uti-
lizing a scene graph extracted from the input text. Simi-
larly, KB-VLP [11] incorporates object tags from images
and knowledge graph embeddings from texts to enhance
the acquisition of knowledge-aware representations. ARL
[15] utilizes expert knowledge as an intermediate medium
to align images and reports. Additionally, a recent study
[45] proposes the automatic generation of visual and tex-
tual prompts, injecting expert medical knowledge into the
prompt for pre-training.

In contrast to existing works, we propose an alignment
method that leverages domain-specific knowledge as an in-



termediate mediator for aligning texts and images, along
with a knowledge-guided prototype clustering contrastive
learning. This approach integrates expert domain knowl-
edge derived from the Unified Medical Language System
(UMLS) [6]. By incorporating UMLS knowledge into both
vision and language modalities, our approach leverages
knowledge as a medium to achieve improved alignment be-
tween images and text, facilitating more effective cluster-
ing of image-text pairs. Importantly, our method effectively
mitigates the influence of disease-level false negatives with-
out relying on object detectors or scene graph parsers.

3. Proposed Approach
In this section, we present our approach for learning effec-
tive medical visual representations using medical reports.
We utilize a knowledge-guided align-and-compare scheme,
as depicted in Figure 2, to match and align modalities and
compare them in the representation space. Our method
comprises four key components: 1) global image-text con-
trastive learning; 2) local token-knowledge-patch alignment
contrastive learning; 3) knowledge-guided category-level
contrastive learning; and 4) proxy tasks to ensure matching
and prevent shortcut exploitation by the network. We dis-
cuss each component in detail in the following subsections
and provide an overview of the overall training objective.

3.1. Problem Setup

Recently, it has been demonstrated in [33, 56] that learn-
ing medical visual representation learning without labels
can achieve competitive performance. In this study, we fol-
low the setting in [56], given a training set of N medical
image-report pairs D = {(xi, yi)}i=1,...,N , we use an im-
age encoder fv and a text encoder ft encode D to a global
feature set Eil = {(vi, ti)|vi = fv(xi), ti = ft(yi)}i=1,...,N ,
and a local feature set Etl={(Pi,Si)}i=1,...,N , where Si =

{s1i , s2i , ..., sVi } ∈ RV×d and Pi = {p1i , p2i , ..., pM
2

i } ∈
RM2×d. V denotes the length of the sentence and M2 de-
notes the number of image patches.

Furthermore, we incorporate expert knowledge into our
model by constructing an extracted knowledge graph, as
described in [15]. This knowledge graph is denoted as
G = {(hei, rei, tai)}NG

i=1, where NG represents the number
of graph triples, and hei, rei, and tai correspond to the head
entity, relation, and tail entity, respectively. The inclusion of
this expert knowledge enhances the model’s understanding
and reasoning capabilities, enabling more informed align-
ment and representation learning.

3.2. Global Image-text Contrastive Learning

To pull correct samples closer and push random samples
apart in the latent space, we follow [31, 52], present a
comprehensive discussion on global image-text contrastive

learning by maximizing mutual information I(X,Y ) be-
tween the vision element X and the language component
Y :

I(X,Y )=
∑

y∈Y

∑
x∈X

P (x, y) log
P (x|y)
P (x)

. (1)

Eq.1 suggests that the fraction P (x|y)
P (x) collapses to zero

when x and y are incompatible with each other. Therefore,
we hypothesize that P (x|y)

P (x) is proportional to the similarity
between x and y. Further, the maximization of mutual in-
formation corresponds to the maximization of the similarity
sim(x, y) between x and y, which can be represented as:

I(v, t) ∝ I(X,Y ) ∝ sim(x, y) ∝ sim(v, t). (2)

Specifically, inspired by [12], we firstly utilize two pro-
jection layers hv and ht to map vi and ti into a normalized
shared feature space, yielding v∗i ∈ Rd and t∗i ∈ Rd, re-
spectively. Then, we apply the dot product to model the
similarity between v∗i and t∗i . To obtain more effective fea-
tures, we perform Self-Attention [54] and LayerNorm [3]
on features:

v∗i = LN(SA{hv(vi)}); (3a)
t∗i = LN(SA{ht(ti)}), (3b)

sim{v∗i , t∗i } = v∗i ti
T , (3c)

where SA denotes Self-Attention module and LN denotes
LayerNorm module.

We optimize this process via image-text contrastive loss
based on InfoNCE loss [53], which are designed to maxi-
mize the mutual information between the correct image-text
pairs in the latent space:

Lil
v2t(vi, ti) = − log(

ϕil(vi, ti)∑B
k=1ϕil(vi, tk)

), (4a)

Lil
t2v(vi, ti) = − log(

ϕil(vi, ti)∑B
k=1ϕil(vk, ti)

), (4b)

where ϕil(vi, ti) = exp(
sim(v∗

i ,t
∗
i )

τ1
), B is the batch size and

τ1 is the global temperature hyper-parameter.
Directly optimizing I(v, t) is a challenging task. As an

alternative, [53] has proposed an alternative method to op-
timize the lower bound of mutual information:

I(v, t) ≥ logN
′
− LNCE(v, t), (5)

where N
′

is the number of negative samples. In Eq.5, min-
imizing LNCE(v, t) is equivalent to maximizing the lower
bound of the mutual information between the medical im-
age and the corresponding report.

To increase the number of samples and enhance the fea-
ture diversity, we perform a divergence encoder to achieve
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Figure 2. The framework of our MLIP. Our model architecture employs global, local, and category-level image-text contrastive learning.
Given medical images and reports as inputs, we extract global features and local features for each modality using image and text encoders.
We leverage global features for global image-text contrastive learning, while the local features are aligned with domain-specific knowledge
from UMLS to achieve fine-grained image-text alignment. Through tucker fusion and cross-modal attention mechanisms, we combine
the image, text, and knowledge representations, facilitating category-level prototype contrastive learning. Furthermore, to enhance feature
diversity, we introduce a divergence encoder as a data augmentation strategy, generating similar yet distinct features. This enables global
contrastive learning between images and augmented text, as well as between text and augmented images.

data augmentation and extend the gap between samples. We
define image divergence encoder ov and text divergence en-
coder ot, initialized by fv and ft, respectively. Then we
obtain features incrementally differentiated from vi and ti:

vaugi = ov(x
rt
i ); taugi = ot(yi), (6)

where xrt
i denotes randomly transformed images. We man-

ually update divergence encoders’ parameters instead of re-
lying on backpropagation:

θot=st∗θft + (1− st)∗θot , (7a)
θov=sv∗θfv + (1− sv)∗θov , (7b)

where st = cosine(ti, t
aug
i ) and sv = cosine(vi, v

aug
i ), and

θot , θov , θft , θfv are the parameters of ot, ov, ft, fv , respec-
tively. In this way, as the sv(st) increases, we aim to retain
fewer parameters from ov(ot) and incorporate more param-
eters from fv(ft), in order to generate more diverse fea-
tures. Then we use Eq.4a, 4b to compute Lil

v2a and Lil
avt.

We compute the objective Lil as the average of the four
loss values:

Lil =
1

2N

∑N

i=1
(Lil

v2t(vi, ti) + Lil
t2v(vi, ti))

+
λ0

2N

∑N

i=1
(Lil

v2a(vi, t
aug
i ) + Lil

avt(v
aug
i , ti)),

(8)

where N is the total number of samples and λ0 denotes the
weight for augmented image-text contrastive learning.

3.3. Local Token-knowledge-patch Alignment Con-
trastive Learning

In medical images, pathologies are often visually subtle and
occupy a small fraction of the overall image, while only
a few disease-related tags in the associated report accu-
rately depict the critical medical condition. Given this ob-
servation, we employ a local image-text contrastive learn-
ing method to maximize the mutual information between
local features and achieve cross-modal alignment between



images and texts, inspired by [18, 56].
However, traditional token-patch alignment contrastive

learning is utilizing the local features of the image and
text to compute the attention matrix, and then perform con-
trastive learning after aligning the images and texts. Since
medical radiology is highly professional and there is a cer-
tain bias between different datasets, we regard professional
knowledge from the UMLS [6] as a medium between vision
and language. To achieve more accurate token-patch align-
ment, we align the knowledge with radiographs and reports.

Similar to global feature, we apply Self-Attention and
LayerNorm module on every features:

pi = LN(SA{hv(pi)}); si = LN(SA{ht(si)}). (9)

We apply the knowledge representation learning algo-
rithm TransE [7] to the knowledge graph G to obtain en-
tity embeddings. Subsequently, we utilize the Graph At-
tention Network [55] to capture local information in the
graph neighborhood for each node. This allows us to obtain
knowledge representations, denoted as {ei}Ne

i=1 ∈ RNe×de ,
where de represents the feature dimension and Ne denotes
the number of entity.

We adopt cross-modal attention mechanism [14, 44] to
explore the matching between knowledge and image:

attnvk
j,k = softmax(

(Qpji )
T (Keki )√
d

), (10a)

zvji =
∑N

k=1
attnvk

j,k(V eki ), (10b)

where Q,K, V ∈ Rd×d are trainable matrices. ei is mapped
to RM2×d. zvji is cross-modal knowledge embedding cor-
responding to pji .

Lying in the purpose of maximizing the lower bound of
mutual information, we leverage InfoNCE loss [53] to pull
pji and zvji closer and push pji and other cross-modal knowl-
edge embeddings apart. However, given that irrelevant in-
formation only occupies a vast majority of medical images,
we employ wj

i to balance the weights of different patches.
The loss Ltl

v2t is designed symmetrically as:

Ltl
v2t = − 1

2NM2

N∑
i=1

M2∑
j=1

wj
i (log

ϕtl(p
j
i , zv

j
i )∑M2

k=1ϕtl(p
j
i , zv

k
i )

+ log
ϕtl(zv

j
i , p

j
i )∑M2

k=1ϕtl(zvki , p
j
i )
),

(11)

where ϕtl(p
j
i , zv

j
i ) = exp(

sim(pj
i ,zv

j
i )

τ2
), τ2 is the local tem-

perature hyper-parameter. To establish the correlation be-
tween the j-th visual patch and the [CLS] token, we assign
the weight wj

i using the last-layer attention mechanism av-
eraged across multiple heads.

Similarly, for the j-th text token, we calculate corre-
sponding cross-modal knowledge embedding ztji and con-
struct local contrastive loss Ltl

t2v to maximize the lower
bound of mutual information between sji and ztji . The ob-
jective Ltl can be defined as the average of these two losses:

Ltl =
1

2
(Ltl

v2t + Ltl
t2v). (12)

3.4. Knowledge-guided Category-level Contrastive
Learning

For a given radiograph-report pair, traditional contrastive
learning approaches treat other radiograph-report pairs
within the same batch as negative samples. However, in the
context of category-level analysis, samples that belong to
different batches but exhibit highly similar semantics should
be considered positive samples. In our approach, we aim to
select representative samples in each iteration, emphasiz-
ing their ability to capture meaningful disease-related in-
formation. In the medical domain, expert knowledge plays
a crucial role in representation learning. We purpose to
bridge the gap between the vast knowledge learned from
general visual and textual data and its effective applica-
tion in the intricate realm of medical radiology. There-
fore, we incorporate expert knowledge from UMLS [6] as
an auxiliary signal. Drawing inspiration from [8, 45], we
propose a knowledge-guided clustering-based approach to
improve the efficacy of learned representations. We bring
together highly similar samples with high-level semantics,
even when originating from different batches, and ensure
their proximity in the feature space, rather than increasing
their distance from one another.

Motivated by [41], we realize to filter out irrelevant in-
formation and explore more fine-grained relations between
images and text. To achieve this, we employ a mechanism
that identifies the most relevant topic in a given context.
Specifically, we utilize v∗i to find the most relevant topic
in t∗i , resulting in ṫi. Then, we use ṫi to find the relevant
topic in v∗i , leading to v̇i. The process is mathematically
defined as follows:

ṫi=LN(softmax(
v∗i

T t∗i√
d

)t∗i ); v̇i=LN(softmax(
v∗i

T v∗i√
d

)ṫi),

(13)
then we utilize tucker fusion [5] to seamlessly integrate vi-
sual and textual features, further fuse with knowledge rep-
resentations:

Q = ((Tc ×1 v̇i)×2 ṫi)×3 Wo, (14)

where Wo represents a mapping matrix which is trainable
and maps fused features to a certain dimensional space, and
Tc denotes the core tensor.

To further integrate knowledge with modality-specific
features, we employ a linear mapping layer to project the



knowledge representation ei into a d-dimensional space and
incorporate it with fused features using cross-modal atten-
tion, thereby facilitating the fusion of information across
modalities:

vkti = SA(softmax(
QT ei
τ3

) · ei), (15)

where τ3 is the temperature hyper-parameter we set to scale
the attention.

For image-text features pair (v̇i, ṫi) and knowledge-
fused features, we apply the iterative Sinkhorn-Knopp clus-
tering algorithm [19] to generate a cluster assignment code
uvkt,i ∈ RC , by assigning vkti to C clusters separately. To
facilitate this, we introduce a set J = j1, ..., jC that con-
tains C trainable cross-modal prototypes, where each pro-
totype jc ∈ Rd. We calculate the visual softmax probabil-
ity pv,i by computing the cosine similarity between the vi-
sual feature vector v̇i and all cross-modal prototypes in J .
Similarly, the textual softmax probability pt,i is obtained by
measuring the cosine similarity between the textual feature
vector ṫi and all cross-modal prototypes in J :

pv,ic =
exp(v̇i

T jc/τ4)∑
l exp(v̇i

T jl/τ4)
; pt,ic =

exp(ṫi
T
jc/τ4)∑

l exp(ṫi
T
jl/τ4)

,

(16)
where τ4 is a category-level temperature hyper-parameter
and c denotes the c-th element of the vector.

To enable knowledge-guided category-level contrastive
learning, we employ uvkt,i as the pseudo-label for training
ṫi and v̇i. This allows the three features to interact in the
latent space and guide the shifting of positive and negative
samples with the assistance of domain-specific knowledge.
The objective loss Lcl is formulated as follows:

Lcl=
1

2N

N∑
i=1

C∑
c=1

(uvkt,i
c log pv,ic + uvkt,i

c log pt,ic ). (17)

3.5. Image-text Matching and Text Swapping

In order to identify the alignment between radiographs and
their corresponding reports, we propose two pretext tasks
aimed at bridging the semantic divide between visual and
linguistic information within the feature space: 1) comput-
ing relevance scores between image patch and contextual-
ized sentence to evaluate the degree of correlation between
the image and text elements; 2) randomly substituting med-
ical reports corresponding to the image with a predeter-
mined probability, improving the discriminative ability on
mismatched samples of the model.

We assume that the text features t and image fea-
tures v have been normalized. Therefore, we construct
the similarity between the two modalities as a relevance
score:r(v, t) = vT · t, subsequently, we randomly select an-
other image v

′
and obtain its corresponding relevance score

r(v
′
, t). To ensure that the difference between r(v, t) and

r(v
′
, t) is greater than a pre-specified margin G, we utilize

the hinge loss function to compute image-text match loss:

Litm = max(0,G − r(v, t) + r(v
′
, t)). (18)

Similarly, we propose a text swapping task, which in-
volves randomly replacing text with a predefined probabil-
ity γ. We employ a bidirectional similarity Hinge loss to pe-
nalize the model for insufficient discriminative ability. This
task aims to enhance the model’s ability to distinguish be-
tween different reports. We employ a cross-modal attention
mechanism to fuse the text and image modalities, then com-
pute the relevance score by performing a weighted summa-
tion of the similarity between the fused representation and
the original text-image pair. Our objective is to ensure that
this score exceeds the score obtained after replacing the text
by a margin G′

:

rts(v, t) = vT · t+ α · CA(v, t)T · CA(t, v), (19a)

rts(v, t
′
) = vT · t+ α · CA(v, t

′
)T · CA(t

′
, v), (19b)

Lts = max(0,G′ − rts(v, t) + rts(v, t
′
)), (19c)

where CA(x,y) = softmax(x
T ·y√
d
) · y. Through these two

designed proxy tasks, we compute the image-text match-
ing loss Litm and the text swapping loss Lts. These losses
quantify the model’s ability to accurately match radiographs
to their appropriate reports, thereby providing a measurable
objective for the optimization process.

3.6. Overall Objective

Our training approach involves joint optimization of the
five losses, aiming to promote the acquisition of effective
and generalizable medical image representations by the net-
work. The overall training objective can be expressed as
follows:

L=λ1Lil + λ2Ltl + λ3Lcl + λ4Litm + λ5Lts, (20)

where λ1, λ2, λ3, λ4 and λ5 are hyper-parameters employed
to balance the weights associated with each respective loss.

4. Experiments
4.1. Pre-training Dataset and Implementation De-

tails

Our MLIP framework is initially pre-trained on the MIMIC-
CXR 2.0.0 dataset [35], with data consistency ensured
through preprocessing methods from [64]. Lateral views
are excluded from the dataset as downstream datasets only
include frontal-view chest images. Inspired by [56], we ex-
tract impression and finding sections from free-text reports,
providing comprehensive descriptions of medical diseases.



We filter out empty or short reports, resulting in approxi-
mately 217,000 image-text pairs. Details about our imple-
mentation can be found in the supplementary 6.1.

4.2. Downstream Tasks

Medical Object Detection. We assess the capability of
our pre-trained image encoder for medical object detection
on the RSNA Pneumonia dataset [50] (stage 2 version) and
the Object CXR dataset [30]. The detection performance
is evaluated using the YOLOv3 [25] frozen setting, where
the pre-trained ResNet-50 [27] image encoder acts as a fixed
backbone for YOLOv3. In this configuration, only the clas-
sification layers are fine-tuned. To evaluate the efficiency
of data utilization, we conduct experiments in the zero-shot
scenario and further fine-tune the model using 1%, 10%,
and 100% of the available training data. Evaluation is per-
formed using the Mean Average Precision (mAP) metric,
computed with IOU thresholds ranging from 0.4 to 0.75.

Method RSNA (mAP) Object CXR (mAP)
Zero-shot 1% 10% 100% Zero-shot 1% 10% 100%

Random Init ∼ 1.0 4.0 8.9 ∼ ∼ ∼ 4.4
ImageNet Init ∼ 3.6 8.0 15.7 ∼ ∼ 8.6 15.9
ConVIRT [64] 3.7 8.2 15.6 17.9 ∼ ∼ 8.6 15.9

GLoRIA-CheXpert [33] 4.4 9.8 14.8 18.8 ∼ ∼ 10.6 15.6
GLoRIA-MIMIC [33] 6.2 10.3 15.6 23.1 ∼ ∼ 8.9 16.6

MGCA [56] 7.8 12.9 16.8 24.9 ∼ ∼ 12.1 19.2
M-FLAG [40] 8.6 13.7 17.5 25.4 ∼ ∼ 13.6 19.5
PRIOR [16] 10.7 15.6 18.5 25.2 1.4 2.9 15.2 19.8
MLIP (Ours) 12.3 17.2 19.1 25.8 2.7 4.6 17.4 20.2

Table 1. Fine-tuned results (mAP [%]) of object detection with
1%, 10%, and 100% of the available training data in RSNA
and Object CXR. ∼ means mAP is smaller than 1%.

Medical Semantic Segmentation. We evaluate the per-
formance of our model for medical semantic segmentation
on the SIIM Pneumothorax dataset [63] and the RSNA
Pneumonia dataset [50]. Following the methodology pre-
sented in [33], we adopt the fine-tuning protocol of U-Net
[48] to assess the segmentation task. Specifically, we utilize
the pre-trained ResNet-50 image encoder as a fixed back-
bone for the U-Net architecture and train the decoder com-
ponent using varying proportions of the available training
data (1%, 10%, and 100%). We also evaluate our model in
the zero-shot scenario. To evaluate the quality of segmenta-
tion, we compute Dice scores [59] as the chosen metric for
performance assessment.

Medical Image Classification. We perform medical im-
age classification on the RSNA Pneumonia dataset [50],
COVIDx dataset [57], and CheXpert dataset [34]. To eval-
uate the transferability of our pre-trained image encoder,
we adopt the Linear Classification setting following the
methodology proposed in prior work [33, 56]. This involves
freezing the pre-trained ViT-B/16 [21] or ResNet-50 image

Method RSNA (Dice) SIIM (Dice)
Zero-shot 1% 10% 100% Zero-shot 1% 10% 100%

Random Init 3.9 6.9 10.6 18.5 ∼ 9.0 28.6 54.3
ImageNet Init 17.6 34.8 39.9 64.0 2.2 10.2 35.5 63.5
ConVIRT [64] 23.3 55.0 67.4 67.5 11.7 25.0 43.2 59.9

GLoRIA-CheXpert [33] 32.0 59.3 67.5 67.8 19.8 35.8 46.9 63.4
GLoRIA-MIMIC [33] 34.6 60.8 68.2 67.6 21.0 37.6 56.4 64.0

MGCA [56] 34.9 63.0 68.3 69.8 33.5 49.7 59.3 64.2
M-FLAG [40] 40.7 64.6 69.7 70.5 37.2 52.5 61.2 64.8
PRIOR [16] 41.8 66.4 68.3 72.7 38.6 51.2 59.7 66.3
MLIP (Ours) 44.3 67.7 68.8 73.5 40.2 51.6 60.8 68.1

Table 2. Semantic segmentation results (Dice [%]) achieved on
the SIIM and RSNA datasets. Each dataset is fine-tuned using
1%, 10%, and 100% of the available training data. The best results
obtained for each setting are highlighted in red, while the subopti-
mal results are highlighted in blue.

encoder and training only a linear classification head for the
downstream classification task. Additionally, to assess data
efficiency, we conduct experiments in the zero-shot scenario
and evaluate the model using 1%, 10%, and 100% of the
training data for each classification dataset. The evaluation
metrics used are the area under the receiver operating char-
acteristic (ROC) curve (AUROC) for RSNA and CheXpert,
and accuracy (ACC) for COVIDx-v6, consistent with the
evaluation criteria outlined in [64]. More details and exper-
iment can be found in the supplementary 6.2 and 6.3.

4.3. Results

Results on Medical Object Detection. We evaluate the
ResNet-50-YOLOv3 architecture on the RSNA and Object
CXR datasets. Our results, presented in Table 1, demon-
strate a significant improvement over ConVIRT [64], GLo-
RIA [33], MGCA [56], M-FLAG [40] and PRIOR [16].
Notably, our method achieves superior performance using
only 1% of the data, surpassing alternative approaches that
require 10% or even 100% of the data for fine-tuning.

Results on Medical Semantic Segmentation. In Table
2, we present the semantic segmentation results (Dice [%])
achieved on the SIIM and RSNA datasets using the ResNet-
50-U-Net architecture. MLIP leverages contrastive learning
and category-level approaches to achieve remarkable per-
formance improvements, consistently obtaining the best re-
sults in various settings, as highlighted in red. Specifically,
MLIP outperforms the MGCA [56] by 4.7% on the RSNA
dataset and 1.9% on the SIIM dataset when fine-tuned with
only 1% of the training data. Moreover, MLIP achieved
state-of-the-art results in zero-shot scenarios.

Results on Medical Image Classification. Table 3 shows
the medical linear classification results on RSNA and
COVIDx datasets. We divide existing pre-trained meth-
ods into two categories: pre-trained on CheXpert [34] and
pre-trained on MIMIC-CXR[35]. The results of other ap-
proaches are from original papers, and we refer to [56],



Method
CheXpert (AUC) RSNA (AUC) COVIDx (ACC)

Zero-shot 1% 10% 100% Zero-shot 1% 10% 100% Zero-shot 1% 10% 100%
Random Init - 56.1 62.6 65.7 - 58.9 69.4 74.1 - 50.5 60.3 70.0

ImageNet Init - 74.4 79.7 81.4 - 74.9 74.5 76.3 - 64.8 78.8 86.3
pre-trained on CheXpert

DSVE [22] 26.6 50.1 51.0 51.5 18.7 49.7 52.1 57.8 - - - -
VSE++ [24] 27.3 50.3 51.2 52.4 19.1 49.4 57.2 67.9 - - - -

GLoRIA [33] 50.4 86.6 87.8 88.1 39.2 86.1 88.0 88.6 20.9 67.3 77.8 89.0
pre-trained on MIMIC-CXR

Caption-Transformer [17] 42.2 77.2 82.6 83.9 - - - - - - - -
Caption-LSTM [61] 45.6 85.2 85.3 86.2 - - - - - - - -

Contrastive-Binary [51] 46.8 84.5 85.6 85.8 - - - - - - - -
ConVIRT [64] 47.6 85.9 86.8 87.3 34.7 77.4 80.1 81.3 17.8 72.5 82.5 92.0

GLoRIA-MIMIC [33] 51.7 87.1 88.7 88.0 40.6 86.6 89.2 90.4 22.1 67.3 81.5 88.6
MGCA (ResNet-50) [56] 50.2 87.6 88.0 88.2 41.0 88.6 89.1 89.9 24.5 72.0 83.5 90.5

M-FLAG (ResNet-50) [40] 55.9 87.8 88.4 88.6 41.8 88.8 89.4 90.2 25.4 72.2 84.1 90.7
PRIOR (ResNet-50) [16] 56.3 87.6 88.6 88.8 42.4 88.9 89.5 90.5 25.9 72.3 84.7 91.0
MLIP (Ours, ResNet-50) 56.9 87.8 88.7 88.9 42.9 88.8 89.6 90.6 26.3 73.0 85.0 90.8
MGCA (ViT-B/16) [56] 50.0 88.8 89.1 89.7 39.2 89.1 89.9 90.8 33.2 74.8 84.8 92.3
MLIP (Ours, ViT-B/16) 57.0 89.0 89.4 90.0 53.0 89.3 90.0 90.8 34.8 75.3 86.3 92.5

Table 3. Image classification results in zero-shot scenarios and fine-tuning with 1%, 10%, and 100% of the training data in
CheXpert, RSNA and COVIDx. The evaluation metric used is AUC [%] for CheXpert and RSNA, and ACC [%] for COVIDx. The best
results achieved for each setting are highlighted in red, while the suboptimal results are highlighted in blue.

pre-train GLoRIA with MIMIC-CXR datasets. We evalu-
ate these approaches in the zero-shot scenario and with 1%,
10% and 100% of the data for fine-tuning, the results all out-
perform the SOTA. For a fair comparison, we pre-train our
model with ResNet-50 and ViT-B/16 architecture. Except
for the ViT-B/16 architecture, which yields comparable re-
sults to MGCA when fine-tuning is conducted using 100%
of the available data, all others achieve better performance
than the same architecture.

4.4. Ablation Study

Table 4 presents ablation results on semantic segmenta-
tion for both RSNA and SIIM datasets. We observe that
leveraging knowledge as an intermediate medium for align-
ing image-text pairs in contrastive learning substantially
enhances the model’s performance. Moreover, category-
level contrastive learning aids in mitigating false negatives,
thereby improving the model’s generalization. Global con-
trastive learning acts as a performance lower bound, com-
plementing local and category-level approaches and yield-
ing promising outcomes. Other ablation studies can be
found in the supplementary 6.4.

4.5. Visualization

To further understand the inner workings of MLIP, we
present learned local correspondences between radiographs
and medical reports in the form of heatmaps and showcase

Tasks Setting RSNA (Dice) SIIM (Dice)
Global ITA Local ITA Category-level ITA 1% 10% 100% 1% 10% 100%

✓ ✓ 57.4 66.3 71.7 49.3 56.7 64.6
✓ ✓ 60.6 68.1 70.4 47.0 48.8 66.4
✓ ✓ 64.7 68.2 73.3 50.0 51.3 67.7
✓ ✓ ✓ 67.7 68.8 73.5 51.6 60.8 68.1

Table 4. Results of ablation study on proxy tasks for the se-
mantic segmentation task. Global ITA’s pivotal role is evident,
which can be attributed to the role of the divergence encoder.

the performance of MLIP on downstream tasks (semantic
segmentation and object detection) in the supplementary
6.5. The visual evidence supports that MLIP excels in fine-
grained feature extraction, boosting accuracy.

5. Conclusion
In this study, we propose MLIP, a novel medical visual
representation learning framework that integrates language
information into the visual domain. By introducing a
divergence encoder to enhance representations and handle
difficult samples, along with a language-knowledge-
image alignment method guided by domain expertise,
we alleviate false negative issue and imprecise alignment
issue in other models. Experimental results demon-
strate the effectiveness of MLIP on multiple datasets,
even in zero-shot scenarios and with limited annotated
data. Our proposed divergence encoder and knowledge-
assisted alignment approach have broader applicability.
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Supplementary Material

6. Implementation Details
6.1. Implementation of Pre-traing

Config Value

optimizer AdamW [43]
learning rate 2e-5
weight decay 0.05

learning rate schedule cosine
warmingup epochs 20
initial learning rate 1e-8

batch size 190
feature dim 128

τ1 0.1
τ2 0.07
τ3 0.2

λ1, λ2, λ3, λ4, λ5 1

Table 5. Experiment setting for MLIP pre-training.

Architecture and Experiment Settings: Our model con-
sists of a text encoder and an image encoder. Following
[33], for the text encoder ft, we adopt the 6-layer BioClin-
icalBERT [1] model from the HuggingFace library. To en-
sure consistency with [56], we either truncate each report
or pad it with [PAD] tokens to maintain a fixed length of
112 text tokens. The text features are represented by the
embedding of the [CLS] token in the final layer, resulting
in a 768-d vector. Additionally, the word token-level fea-
tures S ∈ R768×112 are represented by the embeddings of
individual word tokens in the last layer.

As for the image encoder fv , we utilize both ResNet50
[27] and ViT-16 [21], which is initialized with weights pre-
trained on the ImageNet-1k [49]. We divide the radiograph
into patches of size 16 × 16, resulting in 196 visual tokens
for each image. To process these patches, we prepend a
learnable embedding (referred to as the [CLS] token embed-
ding) to the sequence of embedded patches and input them
into the vision transformer. The embedding of the [CLS]
token in the last layer represents the image-level feature, re-

sulting in a 768-d vector. Additionally, the embeddings of
the individual patches in the last layer represent the visual
patch-level features P ∈ R768×196.

For each modality, we design two divergence encoders ot
and ov , whose parameters are initialized with the ft, fv . We
train our model 50 epochs on 4 pieces of RTX 3090 GPUs.
Table 5 shows the hyper-parameters during our pre-training.

Data Preprocessing: Following [56], we employ the JPG
version of the MIMIC-CXR dataset [35] for pre-training our
MGCA. For each image, we resize the larger dimension to
256 while padding zeros on the smaller side, resulting in
a standardized image size of 256 × 256. During training,
we randomly crop a 224 × 224 region from the image, nor-
malize it to the range(0, 1), and pass it through the image
encoder. The medical reports are sourced from the original
MIMIC-CXR dataset. Consistent with the approach in [56],
we extract alphanumeric character sequences while discard-
ing all other characters and symbols. Moreover, we exclude
reports containing fewer than 3 tokens. To tokenize each re-
port, we employ the WordPiece tokenizer implemented by
BioClinicalBERT [1].

6.2. Implementation of Downstream tasks

Classification: For the fine-tuning of the CheXpert
dataset [34], we exclusively utilize a batch size of 96. How-
ever, for the remaining linear classification settings, we em-
ploy a batch size of 48. Similar to the image preprocess-
ing approach for the MIMIC-CXR dataset, we resize the
larger dimension to 256 while padding zeros on the smaller
side, resulting in a standardized image size of 256 × 256.
Subsequently, for training, we randomly crop the image to
224 × 224, while for validation and testing, we perform a
centered crop. The cropped image is then normalized to the
range(0, 1) before being inputted into the classifier.

In the linear classification setting, we freeze the pre-
trained image encoder (either ResNet-50 or ViT-B/16) and
solely train the classification head, which is initialized with
randomized weights. We utilize the AdamW optimizer [43]
with a learning rate of 5e-4 and a weight decay of 1e-6. The
image classifier is fine-tuned for 50 epochs, and early stop-
ping is employed if the validation loss does not decrease for
10 consecutive runs. The checkpoint model with the lowest
validation loss is saved for testing purposes.

Object Detection: In our object detection experiments,
we follow a specific setup. However, for fine-tuning the



RSNA [50] and Object-CXR datasets [30], we only fine-
tune 1% of the data using a batch size of 8. For other object
detection tasks, we utilize a batch size of 16. We do not em-
ploy any data augmentation techniques. Our preprocessing
involves resizing each image to 224× 224 and normalizing
the pixel values to the range(0, 1). The resulting images are
then fed into the object detection model.

Following [56], we utilize the AdamW optimizer with a
learning rate of 5e-4 and weight decay of 1e-6. We do not
employ a learning rate scheduler in our training process. In
our experiments, we replace the Darknet-53 backbone with
a pre-trained ResNet-50 model. Prior to training, we freeze
the image encoder and randomly initialize the remaining
layers. For predicting bounding boxes, we extract three-
stage features from the 2nd, 3rd, and 4th bottleneck build-
ing blocks. The anchors used in our experiments are consis-
tent with those described in the original paper [47], but we
rescale them based on the input image size of 224× 224.

We fine-tune the object detection model for 50 epochs
and employ early stopping if the validation loss does not de-
crease for 10 consecutive runs. Finally, we save the check-
point model with the lowest validation loss for testing pur-
poses.

Semantic Segmentation: We assess the segmentation
performance of our MLIP on two datasets: the SIIM Pneu-
mothorax [63] Dataset and the RSNA Pneumonia dataset
[50]. We follow the data preprocessing procedure outlined
in [56]. For the RSNA dataset, we generate pneumonia re-
gion masks based on the provided bounding boxes. Specif-
ically, we resize both the images and masks to a size of
512 × 512. To augment the training set, we employ the
ShiftScaleRotate function from the albumentations Python
library 2, which applies random affine transformations such
as translation, scaling, and rotation. The specific augmenta-
tion parameters are as follows: a rotation limit of 10, a scale
limit of 0.1, and an augmentation probability of 0.5. After
augmentation, we normalize the images to the range(0, 1)
before feeding them into the semantic segmentation model.

We adopt the U-Net [48] architecture with a ResNet-50
encoder implemented by the Sementation-Models-PyTorch
library 3 to evaluate the semantic segmentation performance
of the pre-trained ResNet-50 model. During training, we
utilize the AdamW optimizer with a learning rate of 5e-4
and weight decay of 1e-6. Following the approach in [33],
we employ a combined loss function consisting of α× Fo-
calLoss and DiceLoss, where α is set to 10. We fine-tune
the semantic segmentation model for 50 epochs and apply
early stopping if the validation loss does not decrease for
10 consecutive runs. The checkpoint model with the lowest
validation loss is saved for testing.

2https://albumentations.ai/
3https://github.com/qubvel/segmentation models.pytorch

Methods CheXpert Image-to-text Retrieval
Prec@1 Prec@2 Prec@5 Prec@10

ConVIRT [64] 20.3 19.8 19.7 19.9
GLoRIA [33] 29.3 29.0 27.8 26.8
PRIOR [16] 40.2 39.6 39.3 38.0
MLIP (Ours) 41.7 40.3 39.0 39.4

Table 6. Image-to-text retrieval results on CheXpert 5x200.

To assess the semantic segmentation performance of the
pre-trained ViT-B/16 model, we employ the SETR-PUP
(progressive upsample) architecture introduced in [67], re-
placing the encoder with the pre-trained ViT. Our imple-
mentation is based on this repository 4. Unlike the ResNet-
50 variant, we resize each image to a size of 224 × 224
before feeding it into the SETR-PUP model. In this setup,
we freeze the pre-trained image encoder and only train the
decoder portion. The loss function and other training hy-
perparameters remain the same as in the ResNet-50 U-Net
fine-tuning setting.

6.3. Image-text Retrieval

We perform image-to-text retrieval experiments on the
CheXpert 5x200 dataset. Due to the unavailability of re-
ports in CheXpert, we randomly choose 1000 reports from
MIMIC-CXR, with 200 samples exclusively assigned to
each of the 5 diseases. We evaluate the performance us-
ing Precision@K metric to assess the matching between the
retrieved report and the query image label. The results pre-
sented in Table 6 clearly indicate that MLIP outperforms
both GLoRIA and PRIOR with a significant margin.

6.4. Ablation Study

Table 7 presents the ablation results of our main contribu-
tions on the object detection task. Our proposed divergence
encoder enhances feature diversity and enables the model
to better adapt to challenging samples. With the assistance
of expert knowledge, the alignment between medical im-
ages and medical reports becomes more efficient. Lastly,
the proxy tasks designed in our approach strengthen the
model’s ability to discriminate negative samples. Addition-
ally, we conduct ablation study on five losses, as shown in
Table 8.

6.5. Visualization

Visualization of Activated Regions: We introduce a re-
weighting mechanism to assess the importance of visual to-
kens in generating image-level representations. To provide
visual evidence of this process, Figure 4 depicts the weights
assigned to the visual tokens by the ViT model. It is impor-
tant to note that these weights are obtained by averaging the

4https://github.com/fuying-wang/MGCA



Tasks Setting RSNA (mAP) Object CXR (mAP)
DE KA TS+ITM 1% 10% 100% 1% 10% 100%

% 11.7 13.4 19.8 1.2 12.4 16.1
% 13.2 15.6 21.6 2.8 15.3 17.9

% 16.2 17.9 23.5 3.7 16.8 18.8
" " " 17.2 19.1 25.8 4.6 17.4 20.2

Table 7. Results of ablation study on main contributions for the
object detection task, including divergence encoder (DE), knowl-
edge augmentation (KA) and text-swapping + image-text match-
ing (TS+ITM).

Loss Setting RSNA (Dice) SIIM (Dice)
Lil Ltl Lcl Litm Lts 1% 10% 100% 1% 10% 100%

% 57.4 66.3 71.7 49.3 56.7 64.6
% 60.6 68.1 70.4 47.0 48.8 66.4

% 64.7 68.2 73.3 50.0 51.3 67.7
% 65.8 68.3 73.0 50.7 53.4 66.9

% 66.0 68.5 73.2 50.9 53.7 67.2
" " " " " 67.7 68.8 73.5 51.6 60.8 68.1

Table 8. Results of ablation study on five losses for the semantic
segmentation task.

attention weights from the last layer of ViT across multiple
heads. The highlighted pixels in the figure indicate regions
with relatively high attention weights. This visualization
demonstrates that ViT has the capability to automatically
learn and allocate attention to critical regions by aligning
cross-modal instance-level representations.

Visualization of Downstream Tasks Effects: We con-
duct visual effect evaluations for downstream tasks in Fig-
ure 5, specifically object detection and semantic segmenta-
tion. Drawing upon domain expertise, we conclude that our
model achieves competitive performance in lesion segmen-
tation and lesion detection.

Visualization of Important Words: Figure 3 presents
three instances of radiology reports. In these reports, the
top 5 words with the highest weights, indicating their im-
portance, are highlighted in red font. It is important to
note that these weights are obtained by averaging the atten-
tion weights from BERT’s last layer across multiple heads.
Upon analysis, we observe that the majority of the high-
lighted words (such as pneumothorax, bilateral infiltrates,
lung collapse) are closely associated with the patients’ med-
ical conditions. This observation suggests that the BERT
effectively learns to prioritize disease-related words during
the alignment of cross-modal instance-wise embeddings.

presence of bilateral infiltrates with consolidation in the lower lobes. This pattern suggests a possible 

diagnosis of pneumonia. Additionally, there is evidence of a small right-sided pleural effusion. Further 

evaluation and appropriate management are recommended.

right-sided consolidation in the middle lobe. No evidence of pleural effusion or pneumothorax is noted. 

The consolidation is suggestive of pneumonia. Antibiotic therapy and close monitoring are recommended 

for the patient.

bilateral pleural effusions with associated volume loss in the lung bases. No evidence of pulmonary infiltrates 

or pneumothorax is observed. Further evaluation with ultrasound or CT scan is recommended to determine 

the underlying cause of the effusions.

presence of a large right-sided pneumothorax with lung collapse. Immediate intervention, such 

as the insertion of a chest tube, is necessary to relieve the pneumothorax and reinflate the lung. 

Urgent attention is recommended

Figure 3. Visualization on the importance of words according
to the attention weights learned by text encoder. Words with
top 5 highest weights are highlighted by red font.

Figure 4. The visualization of the activated visual tokens in our
ViT. The highlighted pixels in the visualization correspond to re-
gions that have been identified as important by the model. These
regions have been learned through the training process, where
the model dynamically assigns attention to specific visual tokens
based on their relevance to the task.

Figure 5. Visualization results for downstream tasks. The top row
showcases the results of the semantic segmentation task, while the
bottom row displays the results of the object detection task.
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