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1. Implementation Details
1.1. Network Architecture

Referring to Fig. 2 in the main paper, we input a
256× 256 crop into a ResNet-34 backbone without pooling
and fully-connected layers, yielding a 16 × 16 × 512
feature tensor. The decoder conducts two rounds of 2×
upsampling on this tensor, incorporating low-level features
via skip connections, resulting in a 64 × 64 feature tensor.
Following the approach of [2, 6, 18], we use individual
decoders for each object, each producing a 64-channel
image feature and a binary segmentation mask indicating
object visibility. These outputs are concatenated and
downsampled through two consecutive convolution layers
with a stride of two, forming a three-scale feature pyramid.
This is processed through an ASPP block [3] with dilation
rates r = 2, 3, 4, 6, 8, 12, aligning with the rates in the
ASPP block preceding the regression and classification
heads, and capturing both local and global context. We do
not track running means and variances across shared batch
normalization layers, since real and rendered batches can
have different statistics.

Input
resolution

Input
channels

Output
channels Stride

64× 64 186 128 2

32× 32 377 256 2

16× 16 505 256 1

Table 1. Architecture details of the 3 × 3 convolutions inside
the MRC block. Each convolution layer is followed by group
normalization [21] and the Swish activation function [15].

The feature pyramids from both real and rendered
images serve as inputs to our novel MRC block. All
1 × 1 convolutions within this block have both 128 input
and output channels. Additionally, a sequence of 3 ×
3 convolutions is employed to fuse real and correlation

*Equal contribution

features. The architecture of these convolution layers is
detailed in Table 1.

Finally, each individual task head comprises a simple
two-layer multi-layer perceptron (MLP) with a hidden size
of 256.

1.2. Rotation and Translation Representations

To form a uniform partition of SO(3), we follow the
approach in [23] to generate K = 4608 uniform grids
in SO(3). This involves using Hopf coordinates [23] to
decompose 3D rotation into a 1D in-plane rotation (around
the z axis) and a 2D out-of-plane rotation. We then generate
m2 = 192 out-of-plane components using the formula
from [5] with Nside = 4, followed by m1 =

√
πm2 ≈ 24

in-plane components.

For translation, we adopt the SITE format [13] to
disambiguate the network prediction target based on local
image patches. Our formulation of τz slightly differs from
the original version:

τz =
tz

r
√
fxfy

,

where fx, fy are the camera focal lengths and r is the
resizing ratio of the bounding box. This adjustment is made
to normalize τz consistently across different cameras.

To measure distance between poses, we use the
formulation in [10] which computes vertex-based distances
over CAD models. To ensure differentiability near the
origin, we adopt smooth L1 loss [4] as a substitute of
vertex distances. We also leverage the symmetry-aware
formulation in [10] to account for object symmetries.

To decouple relative rotation and translation between
real and rendered images,we closely follow the approach
of [10, 12], differing only in the use of ∆τz as an additive
residual for τz instead of a multiplicative one. This
modification has been found to enhance training stability.
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2. Additional Ablation Studies

MRC-Net uses a Siamese structure for classification and
regression branches. This enables real and rendered
image features to be projected into a shared embedding
space to accurately capture correspondences between them.
To verify efficacy of this design choice, we conduct
ablation experiments comparing Siamese and non-Siamese
versions. The latter decouples the network weights in the
classification and regression branches, as done in [11]. We
use similar strategies as [11, 24] to train classifier and
regressor separately. During training, the ground truth
pose is perturbed synthetically by adding random noise to
simulate classification errors. We then render the images
based on these noisy poses. We follow the same noise
schedule as described in [11]. Comparisons across different
methods are summarized in Table 2a.

The non-Siamese network with separate training exhibits
a significant 11.4% drop in average recall (AR) compared
to the proposed Siamese model. Even with an end-to-end
training strategy, it lags notably by 1.2%. In contrast, the
Siamese model achieves not only superior performance but
also computational and storage efficiency by nearly halving
parameters through parameter sharing.

We next study the impact of the number of rotation
buckets K. Our choice K = 4608(Nside = 4) is the
maximum value that we could fit into our GPU memory,
which gives a relative angle of 14.7◦ between adjacent
rotation buckets [5]. In our SO(3) partitioning scheme
(Section 1.2), alternative values for K include K =
576(Nside = 2) and K = 1944(Nside = 3). Results are
summarized in Table 2b. As K increases, performance of
our model improves slightly, with K = 4608 achieving
the highest AR scores. This validates our choice of K
and supports the assumption that finer classification can
facilitate regression by providing a better pose initialization.

3. Detailed Results on YCB-V

Table 3 shows a comprehensive breakdown of per-object
results for the AUC of ADD-S and AUC of ADD(-S).
Previous works commonly use Mask RCNN detections
provided by CosyPose [10] or FCOS detections provided
by CDPN [13] for their evaluations. Therefore, we present
results for both. Compared to previous techniques, our
method demonstrates notable improvements across most
objects, resulting in an increase of +5.1% in the average
ADD-S AUC and +7.9% in the average ADD(-S) AUC
when combined with FCOS detections.

Further insights into the ADD(-S) metric for individual
objects are presented in Table 4. MRC-Net outperforms
prior models across various objects, leading to an +1.8%
improvement in average ADD(-S) recall when using FCOS
detections.

4. Additional Qualitative Evaluation
Visual examples from the T-LESS, YCB-V and LM-O
datasets are presented in Fig. 1, Fig. 2 and Fig. 3,
respectively. These examples demonstrate MRC-Net’s
ability to accurately predicting object poses in challenging
scenarios such as heavy occlusions, diverse viewpoints, and
distracting background clutter.

We present typical failure cases per dataset in Fig. 4.
In Fig. 4 (b), the object in the center has an inaccurately
estimated pose due to heavy occlusion. In Fig. 4 (d), the
object 0024 bowl in the training set predominantly faces
upward, and occasional incorrect flips of the bowl occur
due to such pose imbalance. Fig. 4 (f) illustrates the
eggbox object with incorrect rotations, partly attributed to
inaccuracies in the CAD model.



Method ARVSD ARMSSD ARMSPD AR

Non-Siamese network with separate training 56.1 63.5 77.4 65.7

Non-Siamese network with end-to-end training 68.9 73.0 85.8 75.9

Siamese network (Ours) 70.6 74.7 86.0 77.1

(a) Ablation studies on Siamese and non-Siamese designs.

K ARVSD ARMSSD ARMSPD AR

576 70.3 74.3 85.6 76.7

1944 70.4 74.4 85.8 76.9

4608 70.6 74.7 86.0 77.1

(b) Ablation studies on K, the number of rotation buckets.

Table 2. Additional ablation studies. Models are trained on T-LESS dataset using synthetic training set [8].

Method PoseCNN [22] GDR-Net [20] ZebraPose [17] CheckerPose [14] MRC-Net MRC-Net

Detection Built-in Faster-RCNN [13, 16] FCOS [13, 19] FCOS [13, 19] Mask RCNN [7, 10] FCOS [13, 19]

Metric
AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

002 master chef can 84.0 50.9 96.3 65.2 93.7 75.4 87.5 67.7 98.2 98.2 98.0 98.0
003 cracker box 76.9 51.7 97.0 88.8 93.0 87.8 93.2 86.7 100.0 98.6 99.9 98.8
004 sugar box 84.3 68.6 98.9 95.0 95.1 90.9 95.9 91.7 100.0 98.9 100.0 99.0
005 tomato soup can 80.9 66.0 96.5 91.9 94.4 90.1 94.0 89.9 95.1 92.6 96.0 93.5
006 mustard bottle 90.2 79.9 100.0 92.8 96.0 92.6 95.7 90.9 99.9 98.9 99.7 98.1
007 tuna fish can 87.9 70.4 99.4 94.2 96.9 92.6 97.5 94.4 97.2 87.3 97.3 87.5
008 pudding box 79.0 62.9 64.6 44.7 97.2 95.3 94.9 91.5 99.6 98.4 99.2 97.9
009 gelatin box 87.1 75.2 97.1 92.5 96.8 94.8 96.1 93.4 98.9 96.7 98.9 96.3
010 potted meat can 78.5 59.6 86.0 80.2 91.7 83.6 86.4 80.4 79.2 75.2 84.1 79.0
011 banana 85.9 72.3 96.3 85.8 92.6 84.6 95.7 90.1 98.9 93.0 98.3 91.9
019 pitcher base 76.8 52.5 99.9 98.5 96.4 93.4 95.8 91.9 99.9 99.6 100.0 99.3
021 bleach cleanser 71.9 50.5 94.2 84.3 89.5 80.0 90.6 83.2 92.5 83.2 93.7 85.2
024 bowl 69.7 69.7 85.7 85.7 37.1 37.1 82.5 82.5 99.0 99.0 98.7 98.7
025 mug 78.0 57.7 99.6 94.0 96.1 90.8 96.9 92.7 99.7 99.7 99.4 99.4
035 power drill 72.8 55.1 97.5 90.1 95.0 89.7 94.7 88.8 99.9 98.1 99.8 97.9
036 wood block 65.8 65.8 82.5 82.5 84.5 84.5 68.3 68.3 83.9 83.9 84.4 84.4
037 scissors 56.2 35.8 63.8 49.5 92.5 84.5 91.7 81.6 90.4 78.0 94.5 85.9
040 large marker 71.4 58.0 88.0 76.1 80.4 69.5 83.3 72.3 96.4 96.4 97.3 97.3
051 large clamp 49.9 49.9 89.3 89.3 85.6 85.6 90.0 90.0 93.2 93.2 97.1 97.1
052 extra large clamp 47.0 47.0 93.5 93.5 92.5 92.5 91.6 91.6 62.1 62.1 98.3 98.3
061 foam brick 87.8 87.8 96.9 96.9 95.3 95.3 94.1 94.1 95.5 95.5 96.7 96.7

Mean 75.9 61.3 91.6 84.3 90.1 85.3 91.3 86.4 94.3 91.7 96.7 94.3

Table 3. Detailed results on YCB-V [22] w.r.t. AUC of ADD-S and AUC of ADD(-S). We highlight the best AUC of ADD-S results in
red, and the best AUC of ADD(-S) in blue.



Method SegDriven [9] GDR [20] Zebra [17] CheckerPose [14] MRC-Net MRC-Net

Detection Built-in Faster RCNN [13, 16] FCOS [13, 19] FCOS [13, 19] Mask RCNN [7, 10] FCOS [13, 19]

002 master chef can 33.0 41.5 62.6 45.9 96.3 94.3
003 cracker box 44.6 83.2 98.5 94.2 100.0 100.0
004 sugar box 75.6 91.5 96.3 98.3 100.0 100.0
005 tomato soup can 40.8 65.9 80.5 83.2 79.9 81.0
006 mustard bottle 70.6 90.2 100.0 99.2 98.0 96.7
007 tuna fish can 18.1 44.2 70.5 88.9 14.3 17.0
008 pudding box 12.2 2.8 99.5 86.5 92.0 93.3
009 gelatin box 59.4 61.7 97.2 86.0 69.3 70.7
010 potted meat can 33.3 64.9 76.9 70.0 61.3 62.2
011 banana 16.6 64.1 71.2 96.0 86.0 82.7
019 pitcher base 90.0 99.0 100.0 100.0 99.6 100.0
021 bleach cleanser 70.9 73.8 75.9 89.8 79.7 80.7
024 bowl 30.5 37.7 18.5 68.0 92.7 90.0
025 mug 40.7 61.5 77.5 89.0 100.0 98.0
035 power drill 63.5 78.5 97.4 95.9 99.3 99.3
036 wood block 27.7 59.5 87.6 58.7 54.7 58.7
037 scissors 17.1 3.9 71.8 62.4 33.3 70.7
040 large marker 4.8 7.4 23.3 18.8 82.7 87.3
051 large clamp 25.6 69.8 87.6 95.4 90.7 94.7
052 extra large clamp 8.8 90.0 98.0 95.6 62.0 99.3
061 foam brick 34.7 71.9 99.3 87.2 72.0 70.7

Mean 39.0 60.1 80.5 81.4 79.2 83.2

Table 4. Detailed results on YCB-V [22] w.r.t. ADD(-S). We highlight the best results in bold.



(a) (b) (c) (d)

Figure 1. Qualitative results on T-LESS [8]: (a, c) The original images and (b, d) MRC-Net object pose predictions. The object’s 3D
model is projected with estimated 6D pose and overlaid on original images with distinct colors. Mask RCNN [7, 10] detection is used.
Best viewed when zoomed in.



(a) (b) (c) (d)

Figure 2. Qualitative results on YCB-V [22]: (a, c) The original images and (b, d) MRC-Net object pose predictions. Mask RCNN [7, 10]
detection is used. Best viewed when zoomed in.



(a) (b) (c) (d)

Figure 3. Qualitative results on LM-O [1]: (a, c) The original images and (b, d) MRC-Net object pose predictions. Mask RCNN
detection [7, 10] is used. Best viewed when zoomed in.



(a) (b)

(c) (d)

(e) (f)

Figure 4. Failure Examples: (a), (c), and (e) show the original images. (b), (d), and (f) represent MRC-net predictions. Observe the
flipped object pose induced by heavy occlusion in the center in (b), the upside-down red bowl in (d), and the inaccurately rotated eggbox
in (f).
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Tracking objects as points. European Conference on
Computer Vision, 2020. 2


	. Implementation Details
	. Network Architecture
	. Rotation and Translation Representations

	. Additional Ablation Studies
	. Detailed Results on YCB-V
	. Additional Qualitative Evaluation

