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In this supplementary material, we provide additional
ablation studies and qualitative results of our fast proposal
generation and of our association. We also elaborate on
our experimental setup, method details, and training and
inference hyper-parameters.

The supplementary material is structured as follows:

* Section A: Effectiveness on other backbones.

 Section B: Zero-shot evaluation on YoutubeVIS.

* Section C: Visualization of instance embeddings.

e Section D: Domain gap and adaptation.

* Section E: Impact of additional photometric augmentation.
 Section F: More detailed comparison of proposal diversity.
* Section G: Compare with self-supervised methods.
 Section H: Comparison with VOS-based methods.

* Section I: More qualitative results.

¢ Section J: More implementation details.

* Section K: Limitations.

A. Effectiveness on Other Backbones

In our main paper, we introduced four method variants, each
building upon foundational detection and segmentation mod-
els: SAM-ViT-B, SAM-ViT-H, Grounding-DINO, and Detic.
Notably, the latter two variants leverage the Swin-B back-
bone. Our MASA training pipeline and adapter have shown
great adaptability to a range of variables, including variations
in backbone structures, pre-training methods (such as detec-
tion or segmentation), and the diverse datasets employed in
training these foundational models.

A critical observation from our study is the reliance of
these variants on large, complex backbones and their pre-
training on extensive datasets. This reliance poses an im-
portant question about scalability and efficiency: Can our
method sustain its effectiveness when applied to smaller,
more streamlined backbones, like the ResNet-50, especially
with standard ImageNet pre-training? To explore this, we
devised a new variant, "Ours-R50," which integrates the
ResNet-50 backbone pre-trained on the ImageNet classifi-
cation task (IN-Sup R50). This new variant maintains the

MASA adapter architecture from our main research, adher-
ing to the identical training protocol established by our initial
four variants.

We have assessed the performance of Ours-R50 across
various benchmarks, including BDD MOTS, BDD MOT, and
TAO TETA. The quantitative results, detailed in Tables 1, 2,
and 3, demonstrate the efficacy of Ours-R50. These findings
are significant as they suggest that our approach can be
effectively adapted to smaller backbones, offering potential
for more efficient and scalable solutions in detection and
segmentation tasks.

BDD MOTS: For BDD MOTS (Table 1), Ours-R50,
equipped with the ResNet-50 backbone and our MASA train-
ing approach, not only outperforms the UNINEXT-H model
with a +0.2 mIDF1 and +0.4 AssocA but also shows min-
imal performance drop compared to the strongest variant,
Ours-SAM-H (-1 mIDF1 and -0.9 AssocA). This highlights
our method’s ability to yield competitive instance embed-
dings, even without the advanced features provided by larger,
specialized models.

BDD MOT: In the BDD MOT benchmark (Table 2), Ours-
R50 surpasses ByteTrack in terms of IDF1 (+0.9) and As-
socA (+0.2) scores. Its performance is on par with our other
variants, showing only a slight decrease compared to Ours-
Detic (-1 mIDF1 and -1.2 AssocA). These results reaffirm
the adaptability of our method across various backbone ar-
chitectures and pre-training environments.

TAO TETA: Evaluating on TAO TETA (Table 3), Ours-
R50, with its standard ResNet-50 backbone, continues to
perform robustly. It closely matches the fully supervised
TETer model, with only a slight decrease in AssocA (-1).
This performance, consistent with our other variants, further
validates the generalizability of our MASA approach across
different backbones and pre-training methodologies.

B. Zero-shot Evaluation on YoutubeVIS

In this section, we evaluate our association method in a zero-
shot setting on the Youtube-VIS 2019 [27] benchmark. To be



Table 1. State-of-the-art comparison on BDD MOTS. All methods
in the table use the same object detection observations. AssocA,
mIDF1, and IDF1 mainly focus on the association quality.

Table 4. State-of-the-art comparison on Youtube-VIS 2019.
represents that we provide the same object detection observations.
Our method does not train using any image or any annotation from
Youtube-VIS 2019.

Method mIDF11  AssocAT TETAT mMOTSAT mHOTAT
Fully-supervised, in-domain

UNINEXT-H [26] 485 532 53.6 35.7 40.6
Self-supervised, zero-shot

Ours-Detic 49.5 535 54.4 36.4 40.2
Ours-Grounding-DINO' 48.6 523 54.0 36.1 40.0
Ours-SAM-B{ 49.2 539 54.8 352 40.7
Ours-SAM-H' 49.7 54.5 54.7 35.8 40.8
Ours-R50" 48.7 53.6 54.7 352 40.4

Table 2. State-of-the-art comparison on BDD MOT val set. All
methods in the table use the same object detection observations.
Our training method learns the most robust and accurate associa-
tion.

Method mIDF11  IDF1T TETAT AssocAT mMOTA?T
Fully-supervised, in-domain

ByteTrack [30]° 54.8 70.4 55.7 51.5 45.5
Self-supervised, zero-shot

Ours-Detic 55.8 713 54.4 529 44.6
Ours-Grounding-DINO’f 55.6 71.7 545 52.7 44.5
Ours-SAM-B' 55.6 71.6 54.0 52.6 441
Ours-SAM-H' 55.3 717 542 51.9 445
Ours-R507 54.8 713 54.0 51.7 442

Table 3. State-of-the-art comparison on TAO MOT. All methods in
the table use the same object detection observations.

Method AssocA  TETA LocA CIsA
Fully-supervised, in-domain

TETer [18]F 36.7 34.6 521 15.0
Self-supervised, zero-shot

Ours-Detic 36.4 347 519 158
Ours-Grounding-DINOY 37.6 34.9 51.8 154
Ours-SAM-Bf 36.6 345 519 151
Ours-SAM-H' 36.4 345 518 154
Ours-R50" 35.7 34.1 521 15.0

specific, we test our MASA adapter with SAM-ViT-B as the
base model directly on Youtube-VIS 2019 for association.
Our method uses the same object detection observations as
the state-of-the-art VIS method UNINEXT-R50 [26]. As
shown in Table 4, our method achieves comparable perfor-
mance with SOTA UNINEXT trained with the in-domain
YoutubeVIS data, while outperforming all other approaches
significantly. This outcome underlines the robust zero-shot
association capabilities of our method, highlighting its effec-
tiveness in scenarios without domain-specific training.

C. Visualization of Instance Embeddings

In Figure 1, we use t-SNE to visualize instance embeddings
learned in different ways. We compare self-supervised ap-
proaches such as MoCo-v2 [4], VES [25], and DINO [2],
alongside two base models: SAM ViT-B [17], originally
pre-trained on SA-1B for segmentation tasks, and IN-Sup

VIS2019 val

Method Zero-shot  Association Label ~ Video AP AP
VisTR [21] X v v 36.2 369
MaskProp [1] X v v 40.0 429
IFC [15] X v v 428 46.8
SeqFormer [23] X v v 474 518
IDOL [24] X v v 495 529
MFVIS [16] X v v 46.6 49.7
VITA [14] X v v 498 545
UNINEXT-R50 [26]F X 4 v 53.0 59.1
Ours-SAM-Bf v X X 51.8 58.1

R50 [13], initially pre-trained on ImageNet for image clas-
sification. Additionally, we present embeddings from fully
supervised in-domain video models [18] and the same base
models enhanced with our MASA adapters. In these visu-
alizations, instances that share the same ground-truth ID
are represented in the same colors. We use the BDD100K
sequence as the data source.

Our observations indicate that the embeddings from the
original SAM, IN-Sup R50, as well as the self-supervised
methods like MoCo, VFS, and DINO, do not consistently
separate different instances within certain complex scenarios,
as highlighted by the instances marked in green, orange, and
yellow. In contrast, by applying our MASA adapter to the
original SAM ViT-B and IN-Sup R50 features, the resulting
adapted embeddings exhibit a successful delineation of dis-
tinct instances. This performance is comparable to that of
fully supervised methods that have been trained on labelled
in-domain videos. Significantly, our method achieves these
results without any labelled in-domain video data, demon-
strating its considerable potential for robust instance-level
correspondence learning.

D. Domain Gap and Adaptation

Except for previously mentioned applications, MASA can
also serve as a useful domain adaption method for instance
association. To be specific, due to the domain gaps such as
object categories, scenarios, and lighting conditions, trackers
trained on data of domain A may suffer from performance
drop when evaluating on domain B. For example, compared
with BDD [29], TAO [10] covers much more diverse scenar-
ios and object categories. Thus, we choose BDD100K [29]
as the source domain and TAO [10] as the target domain.
Then we train two separate models with the same architec-
ture as TETer [18] using labeled data of BDD and LVIS+
TAO [10, 12] respectively. These two models are repre-
sented by the blue and green bars in Figure 2. Please note
that when evaluating their associating ability on TAO, they
use the same object detection observations. As shown in



(a) MoCo R50 (B) VFS R50

(e) SAM ViT-B (f) DINO ViT-B

(g) Video Fully Supervised R50

(c) IN-Sup R50 (d) IN-Sup R50 + MASA

(h) SAM ViT-B + MASA

Figure 1. t-SNE visualization demonstrates the distinctiveness of instance embeddings across various methods on a selected BDD100k
sequence. The embeddings generated by our method (indicated by MASA-enhanced models) exhibit greater inter-instance separation and
tighter intra-instance clustering than other self-supervised methods (MoCo, VFS, DINO) and the original supervised methods (IN-Sup,
SAM). This enhanced discrimination highlights the effectiveness of our adapted features for downstream tasks.
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Figure 2, directly applying embeddings trained on BDD to
TAO (blue bar) leads to poor AssocA, which is 6.5% lower
than the model trained on in-domain TAO (green bar). To
alleviate this performance gap, we fine-tune the track head
of the original TETer model represented by the blue bar
with the MASA training pipeline, while freezing all other
parameters (orange bar). Specifically, we only fine-tune the
model using unlabeled images of LVIS and TAO, while not
using any original TAO annotation. As shown in Figure 2,
compared with the blue bar, the orange bar achieves an im-
provement of 3.9% on AssocA, reducing the domain gap by
60%. This demonstrates that MASA can effectively improve
the association performance in out-of-domain scenarios, only
requiring unlabeled images from the target domain.

E. Impact of Photometric Augmentation

In Section 4.3 of our main paper, we focused on various
geometric augmentations, including random affine transfor-
mations, and large-scale jittering. We also use MixUp to
enhance the instance diversity and simulate the occlusion
effect. This section delves into the impact of additional pho-
tometric augmentation. We specifically examine the effects
of motion blur, Gaussian noise, snow, fog, and brightness
adjustments. Photometric augmentations are characterized
by their ability to modify pixel values in an image. These al-
terations often mimic changes in environmental factors such
as lighting and weather, impacting how scenes are captured
by cameras. Unlike geometric augmentations that change
the spatial arrangement of pixels through rotation, scaling, or
cropping, photometric augmentations do not alter the struc-
tural integrity of objects within an image. Figure 3 illustrates
these augmentations visually.

We maintained the same training regimen as our abla-
tion study in the main paper, and using SAM-ViT-B as the
foundational model for our experiments. Table 5 presents
the results, indicating that the inclusion of photometric aug-
mentation yields only modest improvements. We observed a
marginal increase of +0.1 mIDF1 and +0.2 AssocA on the
BDD dataset and +0.1 AssocA on the TAO dataset. Conse-
quently, these augmentations are not included as a default
in our methodology to achieve a better balance between
performance improvement and the potential increase in com-
putational complexity.
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Figure 3. Beyond the strong geometric augmentations utilized in the main study, this figure presents an exploration of five additional
photometric augmentations: motion blur, Gaussian noise, snow, fog, and brightness adjustments.

Table 5. Assessing the Impact of Additional Photometric Aug-
mentation. The standard augmentation set includes flipping, color
jittering, and random cropping. The more intensive "Strong Aug"
set comprises random affine transformations, large-scale jittering,
and mix-up techniques. The photometric augmentation set tested
here includes motion blur, Gaussian noise, snow, fog, and bright-
ness adjustments.

BDD MOT TAO

Standard Aug | Strong Aug | Photometric Aug mIDF1 ‘ AssocA | AssocA

v 482 439 28.5
v v 54.9 51.9 35.8
v v v 55 52.1 359

F. Comparison of Proposal Diversity

In our main paper, we assessed different proposal genera-
tion mechanisms within the context of association learning.
Specifically, we focused on training using raw images from
the BDD dataset. We experimented by replacing SAM in
our MASA pipeline with Mask2former-SwinL, pre-trained
on the COCO dataset (see [5]). As detailed in Table 9c of
the main paper, the model utilizing SAM’s proposals demon-
strated enhanced performance. This was evident both in
in-domain tracking on the BDD dataset and in zero-shot
tracking scenarios on the TAO dataset. Such findings high-
light the crucial role of SAM’s dense and diverse object
proposals in facilitating effective contrastive similarity learn-
ing.

Further, we present visual comparisons of the proposals
generated by Mask2former and SAM in Figure 4. These
comparative visualizations distinctly showcase the superior
diversity in SAM’s proposals relative to those generated by
Mask2former. SAM exhibits an enhanced ability to identify
a wider array of instances within raw images, providing
proposals with greater diversity. This diversity is pivotal in
instance similarity learning and significantly contributes to
the out-of-domain generalization capabilities of the learned
instance representations.

G. Compare with Self-Supervised Methods

The task of extracting meaningful information from purely
unlabeled images is notably challenging. UniTrack [22] has
showcased the potential of self-supervised trained represen-

tations, such as MoCo [4] and VFES [25], in generalizing to
various tracking tasks across different domains. However, as
depicted in Figure 5, current self-supervised methods pre-
dominantly employ contrastive training with clean, object-
centered images or videos. In particular, VFS trains on the
Kinetics dataset, while MoCo and DINO utilize ImageNet.

However, these approaches primarily focus on frame-
level similarities and fail to leverage instance information
effectively. Consequently, they struggle to learn accurate
instance representations in complex domains with multiple
instances appearing together, demonstrating a notable weak-
ness in extracting robust and generalized representations.

Visualization of Object-Centered Training Data We visu-
alize the training data of VFS [25], the Kinetics dataset, and
compare it with the driving videos from BDD100K in Fig-
ure 6. Kinetics, being an action recognition dataset, ensures
the presence of instances throughout its videos by focusing
on contained actions. Centred entities in Kinetics videos
usually remain consistent over time, making VFS’s sampling
strategy suitable for Kinetics. In contrast, BDD100K driving
videos present a more dynamic and unpredictable environ-
ment. These videos frequently feature objects that enter and
exit the frame, leading to a significant variation in the pres-
ence of instances across different frames. This characteristic
of BDD10OK poses a challenge as two frames sampled from
the same video may not share the same instances, highlight-
ing a fundamental difference in the nature of training data
between the two datasets.

Training with Different Data Sources For a fair compari-
son, when comparing our method with other self-supervised
counterparts in Table 6 of the main paper, we train all meth-
ods using the same raw training images (BDD and COCO),
which are not object-centered and usually contain multiple
instances in complex environments. In this section, we also
present the tracking performance of those self-supervised
methods using their original object-centered training data.
As shown in the table below, the AssocA of MoCo trained
on images from BDD and COCO remains relatively stable
compared to its original version trained on ImageNet, with
only a slight drop on the BDD MOT dataset. However, for
VFS, training on images with multiple instances leads to a
significant performance drop of 15.9 AssocA on BDD MOT
and 12.7 AssocA on TAO, respectively. The reason is as



(a) Original Images

(b) Mask2Former Predictions

(c) SAM Predictions

Figure 4. Comparison between predictions of Mask2Former and SAM.While Mask2Former is limited to identifying ’things’ and ’stuff” from
categories included in its training set, SAM demonstrates a broader detection scope. It effectively identifies objects of more diverse classes

and finer granularity, such as windows, wheels, and traffic signs.

follows: VFS considers frames from the same video as pos-
itive samples and frames from different videos as negative
samples. This strategy is reasonable for Kinetics but not
for BDD, as demonstrated in Figure 6. Specifically, centred
entities in Kinetics videos usually do not change over time,
but in BDD videos, objects frequently move in and out of
frames. Two frames from the same BDD video may not
contain the same instances at all. Lastly, in DINO’s training
process, it forces representations of two augmented views
from the same image to be similar without explicitly using
negative samples. However, for images in BDD and COCO,
two augmented views may contain many different instances,
considering the complex scenes of these two datasets. This
training strategy may cause the learned embeddings to be
less discriminative.

Our approach, which leverages instance-level knowledge
from the pre-trained SAM, moves beyond frame-level simi-
larity to embrace a more nuanced instance-level similarity.
The strong results obtained underscore the effectiveness of
our proposed methods in learning robust representations for
tracking purposes.

Table 6. Compare with self-supervised based methods. All methods
use the same detection observations for testing. Object-centred data
means ImageNet for MoCO and DINO, and Kinetics for VFS.

Method Video BDD MOT ‘ TAO ‘ BDD MOTS
AssocA  mIDF1 | AssocA | AssocA ‘ mIDF1
Train on object-centred data
VFES v 45.1 49.9 31.8 50.3 44.9
MoCov2 X 44.1 48.6 31.1 50.5 45.6
DINO X 41.7 46.5 26 46 40.5
Train on BDD & COCO
VFS v 29.2 35.0 19.1 30.7 30.1
MoCov2 X 427 46.7 30.7 51 453
DINO X 23.1 16.8 12.9 20.2 222
Ours-SAM-B X 51.9 54.9 35.8 53.7 49.1

H. Comparison with VOS-based Methods

The recent segmentation foundation model, SAM, has
demonstrated exceptional ability in segmenting any object.
However, simultaneously tracking all instances generated by
SAM in videos remains a challenging task. Current methods
typically employ SAM as a mask generator for the first frame
of a video, then apply off-the-shelf video object segmenta-
tion (VOS) methods to propagate the initialized mask to
subsequent frames [6—8, 28]. One notable method, Deva [6],
utilizes XMem [7] for mask propagation to track multiple in-
stances simultaneously. However, these methods encounter
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Figure 5. Comparison of self-supervised representation learning methods for object association. (a) Traditional methods, such as SimCLR [3],
MoCo [4], focus on learning representations by leveraging frame-level similarity. They utilize augmented views of entire images to extract
meaningful features. These methods often struggle with complex scenarios involving multiple objects. The reliance on frame-level similarity
can be limiting in environments where object-centric learning is crucial. (b) Methods like VFS [25] take a different route by extracting
positive pairs from different frames within the same video. This approach aims to capture temporal consistency and object dynamics. Similar
to traditional methods, it also requires clean, object-centred video data. The complexity increases significantly in multi-object environments,
where distinguishing between different objects becomes challenging. (c) Our method innovatively combines data augmentation with
SAM’s [17] mask generation technique. This synergy allows for learning dense instance-level correspondences from unlabelled images.
By focusing on dense correspondences at the instance level, it can effectively disentangle and learn from intricate object interactions and
dynamics in complex environments.
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Figure 6. Comparison between Kinetics and BDD100K videos. Kinetics, as an action recognition dataset, ensures that actions are contained
within selected videos, thus guaranteeing the presence of instances throughout the video. Centred entities in Kinetics videos usually do not
change over time. This makes VFS’s sampling strategy reasonable for Kinetics. However, in BDD videos, objects get into and out of the
frames frequently. Two frames sampled from the same video may not contain the same instances at all.

Kinetics

several key disadvantages.

Inadequate Mask Propagation Quality: Trained on rela-
tively small-scale video segmentation datasets, these meth-
ods experience substantial domain gaps when tasked with
tracking any object in any domain, resulting in inadequate
mask propagation quality. Our main paper illustrates that
our method significantly outperforms Deva [6] in zero-shot
testing across various multiple object tracking benchmarks,
especially in driving scenes, which are out-of-domain for

both Deva and our method. We further provide a qualitative
comparison in Figure 7. Additional video comparisons can
be found in the provided video file. Testing Deva in the
driving domain, which differs significantly from its training
data, results in poor mask quality and accumulating errors
over time. Moreover, there is no effective mechanism to
handle the rapid entry and exit of objects in a scene, a com-
mon occurrence in real-world applications like autonomous
driving. In contrast, our method exhibits stable performance



Table 7. Performance Comparison on the UVO Dataset for tracking
objects and their parts. This table presents a detailed analysis of
tracking performance using the UVO dataset. VOS-based methods
like Deva have to resolve overlaps by assigning each pixel to a
unique instance. Tracking parts leads to an incomplete representa-
tion of object masks on UVO, thus affecting performance negatively.
In contrast, our method, capable of handling multiple granularities,
tracks both entire objects and their parts without compromising
performance on the UVO dataset.

Track Method AR100
Zero-shot test
. video Deva-SAM-H: track all instances (with parts) [6] 194
Deva-SAM-H: track only whole objects (no parts) [6] 36.0
Ours-SAM-H: track all instances (with parts) 37.5

in such scenarios.

Difficulty in Managing Multiple Granularities of Pix-
els: Furthermore, these methods are primarily developed for
video object segmentation (VOS) tasks, which typically in-
volve videos and annotations of single, rather than multiple,
diverse objects. As a result, most VOS-based approaches are
designed to track only one instance at a time. While recent
advancements like those in [6, 28] allow for the simultane-
ous tracking of multiple instances, they often work on the
premise that each pixel is part of a single instance. This
overlooks complexities in pixel granularity, where a pixel
may be part of multiple instances depending on the level of
granularity—a common situation in the outputs of SAM, as
depicted in Figure 8. This issue is further illustrated using
the UVO dataset, which contains only coarse object-level
annotations, often omitting finer details of object parts.

We apply SAM to generate mask predictions for each
frame in the UVO dataset for both methods. To track objects
segmented by SAM, a VOS-based method like Deva has to
resolve overlaps by assigning each pixel to a unique instance.
For example, if a group of pixels belongs to a part of an
object, it must decide whether to track the part or the whole
object. Assigning pixels to a part implies that the correspond-
ing object is partially excluded, as shown with the cars in
Figure 8. Conversely, assigning pixels to the object results
in the removal of the part mask. We present the quantitative
results of these scenarios on the UVO dataset in Table 7.
Tracking parts leads to an incomplete representation of ob-
ject masks on UVO, thus affecting performance negatively.
In contrast, our method, capable of handling multiple gran-
ularities, tracks both entire objects and their parts without
compromising performance on the UVO dataset.

I. More Qualitative Results

We provide a video file containing our qualitative tracking
results on multiple domains. Here we provide some visual-
ization results regarding fast proposal generation and dense

object association.
I.1. Fast Proposal Generation

In Figure 9, we compare the segmentation quality of our fast
proposal generation with SAM’s original everything mode
on raw images from COCO validation set. By default, we
output 300 bounding boxes per image, and use a bounding
box NMS with 0.5 threshold as the only post-processing
during inference. The results show that our fast proposal
generation can achieve similar segmentation quality to the
everything mode of SAM, despite using much less time.

I.2. Open-Vocabulary Tracking

We show qualitative results of open-vocabulary tracking in
Figure 10. We observe that our method does well on tracking,
and is able to generalize even to very exotic classes, such as
minions. More results can be found in the provided video.

1.3. Joint Segment and Track Everything

We provide qualitative results on our joint segmentation and
tracking models. Since we learn proposal generation and
association in a joint way, it makes our model capable of
segmenting and associating anything in videos. Figure 11
shows the qualitative association performance using our self-
generated proposals. We notice that although we can learn
strong associations using MASA, it is very difficult to gen-
erate consistent proposals across frames. For example, we
can see the missing segmentation for the building on the
left in the second row. Those inconsistent detections will
lead to severe flickering effects when visualising the results
on videos. This indicates we still need further efforts on
consistent proposal generation for robust detecting objects
in videos.

J. Implementation Details

We provide more details regarding our model architecture,
training, and inference.

J.1. Architecture Detail

MASA Adapter The MASA Adapter comprises two main
parts. The first part involves the construction of a feature
pyramid and dynamic feature fusion. The second part is the
FasterRCNN-based detection head for the object prior to dis-
tillation and the track head for producing tracking features.
The construction process for the feature pyramid varies de-
pending on the backbone used. These variations are detailed
in the respective sections for each model. The dynamic fea-
ture fusion employs standard deformable convolution, as
outlined in [32], to aggregate information across spatial lo-
cations and feature levels. Additionally, task-aware attention
and scale-aware attention from [9] are utilized for SAM-
based models. In total, three fusion blocks are established
for the feature fusion process.
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Figure 7. Qualitative Comparison between Our Method and Deva [6] on BDD100K. This figure illustrates the challenges Deva faces in
driving scenarios, a domain beyond its training environment. Key issues include inadequate mask propagation and an increasing incidence

of false positives over time.

Cut out

Original Image Original SAM’s mask

Our method can track areas with overlapping

Cut out

Original Image Processed SAM’s mask

Non-overlapping inputs for VOS-based method

Figure 8. Challenges of VOS-Based Methods with Multi-Granular Pixel Overlaps. This figure illustrates the complexity encountered when
dealing with overlapping masks in SAM’s output, where a single pixel may be associated with multiple instances at different granularities.
Traditional VOS methods, operating under the assumption that each pixel belongs to only one instance, often resort to heuristics to resolve
these overlaps, as depicted in the second row. In contrast, our method effectively handles such overlapping masks, showcasing its adaptability

in complex scenarios.

The FasterRCNN-based detection head includes a region
proposal network and a class-agnostic box regression head.
The track head comprises four convolutional layers and one
fully connected layer, used to generate instance embeddings.

Ours-Detic We utilize the pre-trained Detic [31] model
with Swin-B [20] as the backbone. The pre-trained model
adheres to the open-vocabulary object detection setup de-
scribed in [11], where rare classes from LVIS are excluded
from training. We freeze the Detic Swin-B backbone and
employ the standard FPN for constructing the feature pyra-
mid. Specifically, we extract features from the 4", 2274,
and 24" blocks of the Swin-B backbone. Subsequently, we
integrate the dynamic feature fusion atop the feature pyramid
to learn tracking features through detection distillation and

instance contrastive learning.

Ours-Grounding-DINO We employ the pre-trained
Grounding-DINO [19] model with Swin-B [20] as the back-
bone. The Swin-B backbone is frozen, and we use the stan-
dard FPN to construct the feature pyramid. Apart from the
differing pre-training and window sizes for the Swin back-
bone, all learnable components are identical to Ours-Detic.
Ours-SAM-B This model is based on SAM, with all original
SAM components frozen. To obtain multi-level hierarchical
features from the plain ViT backbone of SAM, we extract
feature maps from the outputs of the 37¢, 6!, 9", and 12"
blocks. Transposed Convolutions are used to upscale the
feature map from the 3"¢ block by 4x and from the 6"
block by 2x. We maintain the 9" feature map as is, and



downscale the feature map from the 12" block by 1/2 using
MaxPooling. This approach yields hierarchical features with
scale ratios of 4,1, L L. The remainder of the model
mirrors the two models mentioned above.

Ours-SAM-H The learnable portion is largely similar to
Ours-SAM-B. The sole distinction is that we extract features
from the outputs of the 8", 16", 24" and 32" blocks to

construct the feature pyramid.

J.2. More Training Details

For SAM-based models, we turn off MixUp augmentation in
the last two epochs. After that, we finetune the track heads
of the SAM-based models while freezing the other parts with
all augmentations for 6 epochs.

For training our model with any raw image collection,
the following pipeline is utilized. Initially, the ’everything’
mode of SAM is employed to generate training data on raw
images offline, using the SAM-ViTH model to ensure higher
quality. We adhere to the default SAM settings, which in-
volve using 32 sampling points along each side of an image.
Additionally, an Intersection over Union (IoU) prediction
threshold of 0.88 is applied to filter out low-quality predic-
tions. Subsequently, small disconnected regions and holes in
masks are removed. Bounding box Non-Maximum Suppres-
sion (NMS) is also used to eliminate overlapping predictions
with a threshold of 0.7. In our ablation studies, this pipeline
is applied to generate data on raw COCO and BDD100K
images.

J.3. Inference with Given Observations

Notably, during testing on UVO, in addition to using propos-
als generated by our fast-segmenting everything mode, we
also incorporate the same per-frame mask observation as em-
ployed in [6]. This inclusion aims to minimize the temporal
inconsistency in SAM’s mask predictions on videos.

J.4. Inference Details

Overall, our inference scheme is illustrated in Algorithm 1.
In terms of similarity computation, we provide the formula
that we use:

s1(rr) = & exp(q, - q,) exp(g, - 9,)
2> cpexp(@y - 4;) Do crexp(q,-q.)
So (7_’ 7") _ q,.q;
la,llq,|

s(m,r) = %(51(7, r) + so(T,7))

(D
where s(7, ) represents the similarity score between a track
7 and an object candidate r. Here, q,. denotes the detection
embedding of the object candidate r, encapsulating its ap-
pearance features, while q_ represents the track embedding

Algorithm 1 Inference pipeline of MASA for associating
objects across a video sequence.

Input: frame index ¢, object candidates r € P, confidence
pr, detection embeddings q,., and track embeddings q..
forall7 € T.

1: DuplicateRemoval(P)

22 forre PreT # compute matching scores
3: f(r,7) = similarity(q,,q;)

4: end for

5: forr e P # track management
6: c=max(f(r)) # match confidence
7: Tmatch = argmax(f(r)) # matched track ID
8: ifc> gand p; > Bop; # object match found
9: updateTrack(Tmaten, 7, q,., ) # update track
10: elseif p,. >
11: createTrack(r,q,,t)  #create new track
12: end if
13: end for

for track 7, capturing the features of the tracked object. The
s1(7,7) employs an exponential function to compute the
dot product of these embeddings, reflecting the degree of
similarity between the object candidate and the track. This
similarity score is normalized twice: firstly, across all object
candidates 7’ in the set P for a given track 7, and secondly,
across all tracks 7/ in the set 7 for a given object candidate
r. This dual normalization ensures a balanced and compre-
hensive assessment of similarity, facilitating accurate object
association in dynamic video sequences. s (7, 7) computes
the cosine similarity. The final s(7,r) score is the average
between s1(7,7) and so(7, 7).

K. Limitations

One key limitation of our approach is handling temporal
inconsistencies in detection or segmentation results across
video frames. This issue, common in open-world object de-
tection and segmentation models like SAM, is evident when
an object detected in one frame is missed in the next, caus-
ing flickering effects in video visualization, as seen in our
demonstrations. While our MASA adapter excels in learning
associations, it cannot rectify foundational models’ detection
or segmentation errors. The challenge of generating consis-
tent proposals across frames highlights an important area
for future research to enhance the robustness and stability of
object detection in dynamic video environments.



Ours SAM-vitH Everything Mode

Figure 9. Qualitative comparison between our fast proposal generation and the original SAM everything mode on images from COCO
validation set. The results show that our fast proposal generation can achieve similar segmentation quality to the everything mode of SAM,
despite using much less time.



t t+1 t+2 t+3 t+4

Figure 10. Open-Vocabulary Tracking. We condition our Grounding-DINO tracker on text prompts unseen during training and successfully
track the corresponding objects in the videos. We use SAM to generate the mask from given the detected boxes. The mask color depicts the
object’s identity. We choose random internet videos to test our algorithm on diverse real-world scenarios. Best viewed digitally.



Figure 11. Qualitative results of unified proposal generation and association. The same colour indicates the same instance. We notice that
although we can learn strong associations using MASA, it is still very difficult to generate consistent proposals across frames. For example,
we can see the missing segmentation of the building on the left in the second row. This indicates further research efforts are needed on
consistent proposal generation in videos.
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