
MemoNav: Working Memory Model for Visual Navigation

Supplementary Material

Figure 6. The memory model by Cowan et al. [15]. This figure is
borrowed and adapted from its original paper.

8. Relation between MemoNav and Represen-
tative Working Memory Models

Human memory consists of complex interactions between
long-term memory (LTM), short-term memory (STM), and
working memory [15]. As defined by Cowan et al. [15],
LTM refers to the vast, stable knowledge base and expe-
riences stored over a lifetime. STM is a transient, limited-
capacity memory system that holds information in an acces-
sible state for brief periods. Working memory incorporates
selective parts of STM as well as stored LTM knowledge
through an attention mechanism, in order to actively process
information relevant to the current task or decision. Cowan
et al. [15] also designed a framework depicting how WM is
formed from STM and LTM (shown in Fig. 6). This frame-
work demonstrates that STM cooperates with LTM and de-
cays as a function of time unless it is refreshed. The useful
fraction of STM is incorporated into WM via an attention
mechanism to avoid misleading distractions. Subsequent
work by Baddeley et al. [4] suggests that the central execu-
tive manipulates memory by incorporating not only part of
STM but also part of LTM to assist in making a decision.

We draw inspiration from the work by Cowan et al. [15]
and Baddeley et al. [4] and formulate the navigation mem-
ory of MemoNav as an emulation of the human STM, LTM
and working memory systems.

The parallel between MemoNav and the two relevant
models above is shown in the following list:
• The map node features are termed “STM”, since they are

local and transient.

• The topological map of MemoNav maintains a 100-node
queue to store map nodes. This design simulates STM
that holds a limited amount of information in a very ac-
cessible state temporarily in the human brain.

• MemoNav introduces a global node aggregating prior ob-
servation features stored in the topological map, thereby
simulating LTM which acts as a large knowledge base.

• MemoNav utilizes a forgetting mechanism to remove a
fraction of STM with attention scores lower than a thresh-
old. This mechanism acts as a simple way of decaying
STM.

• The forgetting mechanism helps WM include part of
STM.

• MemoNav incorporates the retained STM and the LTM
into WM, which is subsequently used to generate naviga-
tion actions. This design simulates the working memory
model by [4].

9. Implementation Details
9.1. Implementation of MemoNav

Built upon VGM, MemoNav inherits its topological map
and uses its localization approach to add nodes. In addition,
MemoNav improves the memory module while keeping the
visual encoder and policy network unchanged of VGM.

We follow the training pipeline in [23] to reproduce
CNNLSTM and train our MemoNav. These methods are
first trained via imitation learning, minimizing the nega-
tive log-likelihood of ground-truth actions. Next, the agents
are further fine-tuned with PPO [35] to enhance exploratory
ability. The reward setting and auxiliary losses remain the
same as in VGM.The reward setting and auxiliary losses re-
main the same as in VGM.

The detailed MemoNav framework is shown in Fig. 7.
The structure of the memory decoding module in MemoNav
remains the same as in VGM [23]. The forgetting module
of MemoNav requires the attention scores generated in the
decoder Dgoal. Therefore, our model needs to calculate the
whole navigation pipeline before deciding which fraction
of the STM should be retained. This lag means that the
retained STM is incorporated into the WM at the next time
step. The pseudo-code of MemoNav is shown in Algorithm
1.

9.2. Reproduction of CNNLSTM

We reproduce CNNLSTM [43] following the description
in its original paper, but we also make some modifica-
tions to keep the comparison fair. We replace the ResNet-
50 in CNNLSTM with the pretrained RGB-D encoder of

Figure 7. The detailed structure of MemoNav. The goal decoder Dtarget calculates the attention scores α for each STM feature in the
topological map. Then the scores are used by the proposed forgetting module to remove redundant STM which will no longer be utilized
for downstream action generation. V denotes the retained STM and Mw the working memory.

Algorithm 1: The implementation of the MemoNav
Data: Empty topological map G = {V, E}, goal image Igoal, current time step t, forgetting percentage p, trainable

observation encoder Fenc, GATv2-based encoder GATv2, Transformer decoders Dgoal and Dcur,
LSTM-based policy network LSTM

Result: Navigation action at
1 Long-term memory nglobal ← 0 ∈ Rd;
2 Attention scores for graph nodes V : α← 0 ∈ R|V |;
3 while not AgentCallStop () do

// Step 1: Update the topological map
4 It ← GetCurrentPanorama();
5 G.UpdateMap(It);

// Step 2: Retain the informative fraction of the STM
6 Forgotten number n← Floor (p · |V|);
7 Sorted indices i← Argsort(α);
8 Forgotten indices iforgotten ← i [0 : n];
9 G.RemoveNodes(iforgotten);

10 V ∈ R|V|×d ← G.GetNodeFeatures ();
11 Working memory Mw ← GATv2({V , nglobal}) // Note that STM is fused before being

forgotten in the next step so the features of forgotten STM have been
fused into LTM.

12 ; ecur ← Fenc(It), egoal ← Fenc(Igoal);
13 fcur ← Dcur (ecur,Mw) , fgoal ← Dgoal(egoal,Mw);
14 α← Dgoal.GetAttScores()

// Step 4: Action generation
15 x← LSTM(FC([fcur,fgoal, ecur]));
16 p (at | x) = σ(FC(x));
17 at ← SampleFromDistribution(p(at | x));
18 end

VGM [23]. We also add positional embeddings to the en-
coded RGB-D observations to contain temporal informa-

tion. Moreover, we concatenate the encoded RGB-D ob-
servations with the goal image embedding and project the

concatenated feature (1024D) to a 512D feature, so CNNL-
STM can utilize the information of the goal image. The pro-
jected features of four consecutive frames are further con-
densed and then input to a policy network as in [43]. To use
the two auxiliary tasks proposed in VGM [23], we also in-
troduce the linear projection layers (Linear-ReLU-Linear)
used in VGM to process the embedded goal image and em-
bedded current observation.

9.3. Compute Requirements

We utilize an RTX TITAN GPU for training and evaluating
our models. The imitation learning phase takes 1.5 days to
train while the reinforcement learning takes 5 days.

The computation in the GATv2-based encoder and the
two Transformer decoders occupy the largest proportion of
the run-time of MemoNav. The computation complexity
of the encoder and the decoders are O(|V|d2 + |E|d) and
O (|V|d), respectively. Using the forgetting module with
a percentage threshold p, the computation complexity of
MemoNav can be flexibly decreased by reducing the num-
ber of nodes to (1− p)|V|.

10. Comparison between MemoNav with and
without Forgetting

We analyze the impact of the forgetting module on Memo-
Nav’s trajectory properties, such as smoothness and length.
Fig. 9 illustrates that the inclusion of the forgetting module
results in more smooth and efficient trajectories. In con-
trast, trajectories generated without this module are charac-
terized by numerous abrupt turns and extended paths. This
disparity likely arises from a segment of the Short-Term
Memory (STM) containing irrelevant information, leading
to frequent and erratic alterations in the policy network’s ac-
tion output. The forgetting module effectively filters out this
disruptive portion of STM, thereby enabling the policy net-
work to use task-relevant navigation memory for efficient
decision-making.

11. In-depth Analysis of Forgetting Module
An extensive statistical analysis is conducted to compre-
hend the forgetting module’s functionality. In this experi-
ment, five distance metrics are calculated: (a) distance from
a node to the agent, (b) distance from a node to the goal,
(c) distance from a node to the oracle shortest path, (d)
distance from a node to the shortest path segments closer to
the agent, and (e) distance from a node to the shortest path
segments closer to the current goal. Then the histograms of
these five metrics are drawn according to the metrics records
for each forgotten/retained node at each time step so we can
see the patterns of these distance metrics. Please see Fig. 10
to better understand the definitions of the distance metrics
(c)(d)(e).

We evaluate MemoNav on the 3-goal Gibson task and
draw the histograms on per-goal basis, as shown in Fig. 11.
The figure provides two interesting findings:

• The distance distribution patterns for forgotten nodes
(green bars) and retained ones (orange bars) vary across
goals. Notably, as the agent progresses to the third goal,
the distributions of the distances from forgotten nodes to
goals (column 2) and to shortest path segments near goal
(column 5) become uniform. In contrast, these two his-
tograms for the retained nodes become sharper and the
peaks shift to smaller distance values. This pattern sug-
gests the forgetting module selectively retain nodes that
are proximal and relevant to the current goal.

• The forgetting module has a larger impact on the distance
metrics when the navigation task becomes more difficult.
Specifically, when the current goal index is 1 (i.e. the task
is easy), the averages of the distance metrics for forgotten
nodes and retained nodes are close. When the goal index
rises to 3 (i.e. the task becomes harder), a larger propor-
tion of the retained nodes are close to the goal, the shortest
path, and the shortest path segments near goal. This pat-
tern suggests that MemoNav focuses on critical areas for
navigation, such as the goal vicinity and the shortest path.

These results empirically validate that MemoNav is able
to retain the information useful for multi-goal navigation
via the forgetting module.

12. The Variation of the LTM

We explore the dynamic nature of the LTM during navi-
gation by calculating the L2 distance between consecutive
time-step features, as depicted in Fig. 14. The trends ob-
served in these curves – rapid initial increases in L2 differ-
ence followed by stabilization and intermittent peaks – are
indicative of the LTM’s response to the agent’s environmen-
tal interactions.

To understand why the LTM variation shows such a
trend, we visualize the agent’s observations at the time steps
of the peaks. Specifically, the L2 difference remains low in
familiar areas, suggesting stability in the LTM’s feature rep-
resentation. For instance, in the 2-goal example (top row),
the L2 difference steadily decreases in t = 31 ∼ 55 dur-
ing which the agent travels around visited areas; (2) The L2
difference increases sharply upon encountering new scenes.
These peaks correspond with the agent’s exposure to novel
views. For instance, in the 3-goal example (bottom row),
the L2 difference curve exhibits peaks at t = 68 when the
agent passes a corner and at t = 88 when the agent observes
a novel open area. These results highlighting the LTM’s role
in assimilating new exploratory experiences.

Figure 8. Histograms of geodesic distances for the multi-goal test datasets. As we set a distance limit for goals and discard invalid
trajectories, a scene may own its prominent distance range, leading to the nonuniform histograms.

Figure 9. Visualization comparing the MemoNav with and without the forgetting module. We compare selected episodes at four
difficulty levels in the Gibson scenes and visualize the top-down views. MemoNav without the forgetting module exhibits more sharp turns
and tends to take more steps, demonstrating lower efficiency compared to the full MemoNav. The number of navigation steps (the upper
limit is 500) are shown at the bottom of each top-down view. Best viewed in color.

13. Limitations

While MemoNav witnesses a large improvement in the nav-
igation success rate in multi-goal navigation tasks, it still
encounters limitations. The proposed forgetting module is
a post-processing method, as it obtains the attention scores
of the decoder before deciding which nodes are to be forgot-
ten. Future work can explore trainable forgetting modules.
The second limitation is that our forgetting module does not
reduce memory footprint, since the features of the forgot-
ten nodes still exist in the map for localization. Moreover,
the forgetting threshold in our experiments is fixed. Future
work can merge our idea with Expire-span [36] to learn an
adaptive forgetting threshold.

14. Potential Impact

The notable potential of negative societal impact from this
work: our model is trained on 3D scans of the Gibson
scenes which only contain western styles. This inadequacy
of diverse scene styles may render our model biased and in-

compatible with indoor environments in unseen styles. As
a result, our model may be only available in a small fraction
of real-life scenes. If our model is transferred to out-of-
distribution scenes, the agent may take more steps and even
bump on walls frequently.

Figure 10. The visualization of distance metrics (c), (d), and (e) defined in Sec. 11.

Figure 11. Histograms of the five distance metrics defined in Sec. 11. The data of these metrics is collected by evaluating the MemoNav
on the 3-goal task in the Gibson scenes and averaged over five runs. The upper row (green) and lower row (orange) belong to the forgotten
nodes and retained ones, respectively.

Figure 12. Multi-goal example trajectories of MemoNav. Each example shows both the topological map and the trajectory. The graph
nodes are incrementally added to the map and selectively retained by the forgetting module in MemoNav. The examples illustrate that
MemoNav flexibly neglects distant nodes. The yellow downward arrow denotes the current localized node of the agent. The comparison
with VGM in these example tasks is recorded in the supplementary videos.

Figure 13. Examples of failed episodes. The agent encounters four major failure mode: (1) Stopping mistakenly: the agent implements
stop at the wrong place. (2) Missing the goal: the agent has observed the goal but passes it. (3) Not close enough: the agent attempts to
reach the goal it sees but implements stop outside the successful range. (4) Over-exploring: the agent spends too much time exploring open
areas without any goals.

Figure 14. Visualization of the LTM variation. We show the agent’s trajectories in two example episodes and visualize the agent’s
observations at the time steps when peaks appear on the LTM variation curves. The green arrows denote when the agent sets a new goal
while the orange ones denote when peaks appear.

	. Introduction
	. Related Work
	. Background
	. Task Definition
	. Brief Review of Visual Graph Memory

	. Method
	. Selective Forgetting Module
	. Long-Term Memory Generation
	. Working Memory Generation

	. Experiments
	. Datasets
	. Compared Methods and Training Details
	. Quantitative Results
	. Ablation Studies and Analysis
	. Qualitative Comparison
	. Visualization of MemoNav

	. Conclusion
	. Acknowledgments
	. Relation between MemoNav and Representative Working Memory Models
	. Implementation Details
	. Implementation of MemoNav
	. Reproduction of CNNLSTM
	. Compute Requirements

	. Comparison between MemoNav with and without Forgetting
	. In-depth Analysis of Forgetting Module
	. The Variation of the LTM
	. Limitations
	. Potential Impact

