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A. Introduction
This is the supplementary document for NeISF. We dis-

cuss some details that are not shown in the main paper due
to space limitations. The remainder of this document is
structured as follows. We analyze our polarimetric renderer
in Sec. B. In Sec. C, we introduce the proposed synthetic
and real-world polarimetric datasets. We provide additional
experimental results in Sec. D. A detailed physical back-
ground of the polarimetric rendering is shown in Sec. E. Fi-
nally, We introduce the implementation details of our model
in Sec. F.

B. Polarimetric Renderer
Our polarimetric renderer is implemented by PyTorch

[7]. To verify the correctness of the constructed renderer,
we compare the rendering results of our renderer with Mit-
suba 3.0 [4]. The material model is Baek pBRDF [2]. For
simplicity, we only render a sphere with diffuse albedo ρ
set to [0.5, 0.5, 0.5] and roughness r set to 0.1. The refrac-
tive index of air is set to 1.0, and the refractive index of the
sphere is set to 1.5. The illumination is a pure white en-
vironment map and we only render the direct illumination.
As Fig 1 shows, our renderer can produce similar results as
Mitsuba 3.0.

C. Datasets
C.1. Synthetic

We rendered our synthetic dataset using Mitsuba 3.0 [4]
with polarized mode. For the material, we used the Baek
pBRDF [2] model. We set the refractive index of air to 1.0,
the refractive index of the object to 1.5, and the specular
coefficient to 1.0. The diffuse albedo is textured but the
roughness is spatially-constant for each 3D mesh because
Mitsuba 3.0 does not support a spatially-varying roughness
for Baek pBRDF. We used open-source 3D objects as our
geometry. As shown in Fig. 3, we placed the object inside a
modified Cornell Box. Specifically, the material of the wall
was also set to Baek pBRDF. Besides, we used a very small
(less than 0.1) roughness to make sure the specular reflec-
tion was strong inside the box. We used two illuminations,
one is an area light under the ceiling of the box, and another
one is an environment map. Although both light sources are

unpolarized, the multiple bounces inside the box can make
the light polarized before interacting with the object. For
each object, we rendered 110 images. Each image contains
a 9-channel Stokes vectors map, a 3-channel surface normal
map, a 3-channel albedo map, a 1-channel roughness map, a
3-channel specular intensity image, a 3-channel diffuse in-
tensity image, and a 1-channel object mask. The cameras
were uniformly distributed on the hemisphere around the
object. We used 100 images for training and 10 images for
testing. The resolution for the synthetic dataset is 700 ×
700, and we rendered 4096 samples per pixel.

C.2. Real-world

Images from the real-world dataset were captured by a
FLIR BFS-U3-51S5PC-C polarization camera with a Sony
IMX250MYR sensor. For each viewpoint, we captured
eight images with the exposure time [4, 8, 16, 32, 64, 128,
256, 512] ms. Then, we composite them to obtain one HDR
image IHDR in the raw image domain. We apply the al-
pha blending to minimize the noise in the composited image
IHDR as below.

IHDR = α · gshort · Ishort + (1− α) · glong · Ilong, (1)

where Ishort and Ilong are intensities of a short-exposure
and a long-exposure image respectively. gshort and glong are
gain values to equalize the level of each image. These are
calculated from the ratio of the exposure time. We get the
optimal weight α by minimizing the noise variance σ2

HDR.
This can be represented using noise variances of two im-
ages, σ2

short, σ
2
long,

σ2
HDR(α) = α2 ·g2short ·σ2

short+(1−α)2 ·g2long ·σ2
long. (2)

Note that our main paper uses σ as density in Eq. (9). How-
ever, we denote σ2 as noise variance in this section. The
optimal weight α̂ that minimizes Eq. 2 can be simply ob-
tained by solving

∂σ2
HDR(α)

∂α
= 0. (3)
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Figure 1. The rendering results between our renderer (denoted as “Torch” in the figure) and Mitsuba 3.0 [4].

Data capturing Camera poses estimation

Figure 2. Scene setup of the real-world dataset. Left: We placed the object on a round table and moved the camera around it. Right:
Camera poses were estimated by COLMAP [8, 9].



Figure 3. Scene setup of the synthetic dataset. We placed the
object inside a modified Cornell Box. The light bounces multiple
times and becomes polarized before hitting the object.

The optimal weight α̂ is

α̂ = argmin
α

σ2
HDR(α) (4)

=
g2long · σ2

long

g2short · σ2
short + g2long · σ2

long

(5)

Here, the variances of noise in the raw image, σ2
short,

σ2
long, are assumed to follow a shot noise model where the

noise variance has a linear relationship with the expected
intensity µ [14],

σ2 = a · µ+ b. (6)

Parameters a and b can be estimated by fitting the mean
intensity and variance obtained from a series of raw images
of a scene with different brightness to Eq. 6. Thus, we can
estimate the noise variance of the raw image by substituting
the intensity I to Eq. 6. We recursively apply Eq. 1 to
expand to eight images’ composition.

After demosaicing, we can get four polarized images
with the polarization angle [0◦, 45◦, 90◦, 135◦], and we de-
note them as I0, I45, I90, I135. The Stokes vectors can be
calculated as follows:

s[0] = (I0 + I45 + I90 + I135)/2, (7)

s[1] = I0 − I90, (8)

s[2] = I45 − I135. (9)

We selected 3 real-world objects which are “Dinosaur”,
“Sumo”, and “Sakura pot”. For each object, we took 96
viewpoints for training and 3-7 viewpoints for evaluation.
The resolution of the captured Stokes vectors is 1224 ×
1024. Due to the limited computational resources, we re-
scaled the resolution to 612 × 512 before training. In ad-
dition, we manually created a binary mask using Photo-
shop [1] for each viewpoint. The camera poses were calcu-
lated by COLMAP [8, 9]. Fig. 2 shows the capture settings
and the reconstructed camera poses.

D. Additional Results
We provide additional results here due to the page limi-

tation of the main paper. In Fig. 4, we show that our method
is also capable of handling objects that have complex geom-
etry. We can reconstruct a high-fidelity geometry while the
other methods lose some details. In Fig. 5, we show that
with the aid of polarization cues, the reconstructed rough-
ness map is much cleaner due to the better disentanglement
of geometry and material. Finally, in Fig. 6, we show the
contribution of the joint optimization.

E. Physical Background
This section is an extension of the physical background

of the main paper and contains more details. Some contents
are reused from the main paper.

E.1. Polarimetric rendering

In Beak pBRDF [2], the rendered Stokes vectors can
be obtained by the combination of the diffuse and specu-
lar components:

scam = scam
dif + scam

spec, (10)

and the diffuse and specular components should be treated
separately:

scam
dif = Rcam

dif ·
∫
Ω

Mdif · sr
dif dωi, (11)

scam
spec =

∫
Ω

Rcam
spec ·Mspec · sr

spec dωi. (12)

For the diffuse component, the rotation matrix Rcam
dif is the

same for all incident light directions. For convenience, we
can also put the rotation matrix into the integral, then we
can rewrite Eq. 11 as:

scam
dif =

∫
Ω

Rcam
dif ·Mdif · sr

dif dωi. (13)

Where sr
dif and sr

spec are the already rotated incident Stokes
vectors of diffuse and specular components and they are es-
timated by MLPs. In contrary, Rcam

dif ·Mdif and Rcam
spec ·Mspec

are modeled explicitly.
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Figure 4. Qualitative comparison of the reconstructed surface normal of the real dataset.
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Figure 5. Roughness comparison. Without polarization cues, the
reconstructed roughness is easily affected by geometry and shad-
ows.

Rcam
dif with the rotation angle ϕdif is as follows:

Rcam
dif =

1 0 0
0 cos (2ϕdif) sin (2ϕdif)
0 − sin (2ϕdif) cos (2ϕdif)

 . (14)

Mdif can be formulated as follows:

Mdif = (
ρ

π
cos θi)F

T
o ·D · FT

i . (15)

ρ is the diffuse albedo, θi,o denotes the incident/outgoing
angle, D ∈ R3×3 is a depolarizer:

D =

1 0 0
0 0 0
0 0 0

 , (16)

the Fresnel transmission term FT
i,o ∈ R3×3 is defined as:

FT
i,o =

T+
i,o T−

i,o 0

T−
i,o T+

i,o 0

0 0 T×
i,o

 , (17)

where T+
i,o = (T⊥

i,o + T
∥
i,o)/2, T−

i,o = (T⊥
i,o − T

∥
i,o)/2, and

T×
i,o =

√
T⊥
i,oT

∥
i,o. Where T⊥

i,o is the perpendicular term of
the transmission coefficient:

T⊥
i,o =

4 cos θi,o

√
η2 − sin2 θi,o

(cos θi,o +
√
η2 − sin2 θi,o)2

, (18)

and T ∥
i,o is the parallel term of the transmission coefficient:

T
∥
i,o =

4η2 cos θi,o

√
η2 − sin2 θi,o

(η2 cos θi,o +
√
η2 − sin2 θi,o)2

, (19)

where η is the refractive index of the object. Then, we can
rewrite Eq. 13 as follows:

scam
dif =

∫
Ω

ρ

π
cos θi T+

o T
+
i T+

o T
−
i 0

T−
o T

+
i cos(2ϕdif) T−

o T
−
i cos(2ϕdif) 0

−T−
o T

+
i sin(2ϕdif) −T−

o T
−
i sin(2ϕdif) 0


· sr

dif dωi,

(20)

where ϕdif is the rotation angle from the reference frame of
Mdif to the camera axis. Note that elements in the third
column of the matrix are all zero. That is the reason we
do not estimate sr

dif[2] in the main paper. In addition, when
rendering RGB images, Eq. 20 should be repeated three
times with separate diffuse albedos.

Similarly, Rcam
spec with the rotation angle ϕspec is as fol-

lows:

Rcam
spec =

1 0 0
0 cos (2ϕspec) sin (2ϕspec)
0 − sin (2ϕspec) cos (2ϕspec)

 . (21)
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Figure 6. Comparison of with or without joint optimization. Because of the inaccurate geometry initialization in the first training stage, the
results of roughness and specular intensity map are noisy.

Mspec can be written as follows:

Mspec = ks
DG

4 cos θo
FR, (22)

where ks is the specular coefficient. GGX distribution func-
tion D [11] is defined as follows:

D =
r2

π cos4 θh(r2 + tan2 θh)2
, (23)

where r is the roughness, θh is the angle between the
halfway vector and surface normal. Smith G function [3]
is as follows:

G = (
2

1 +
√
1 + r2 tan2 θi

)(
2

1 +
√
1 + r2 tan2 θo

).

(24)
Fresnel reflection term FR ∈ R3×3 is as follows:

FR =

R+ R− 0
R− R+ 0
0 0 R× cosψ

 , (25)

where ψ is the phase shift, cosψ = −1 when the incident
angle is less than the Brewster angle; otherwise, cosψ = 1.
R+ = (R⊥ + R∥)/2, R− = (R⊥ − R∥)/2, and R× =√
R⊥R∥. R⊥ is the perpendicular term of the reflection

coefficient:

R⊥ = (
cos θo −

√
η2 − sin2 θo

cos θo +
√
η2 − sin2 θo

)2, (26)

and R∥ is the parallel term of the reflection coefficient:

R∥ = (
η2 cos θo −

√
η2 − sin2 θo

η2 cos θo +
√
η2 − sin2 θo

)2. (27)

Then Eq. 12 can be rewritten as follows:

scam
spec =

∫
Ω

ks
DG

4 cos θo R× R− 0
R− cos 2ϕspec R+ cos 2ϕspec R× sin 2ϕspec cosψ
−R− sin 2ϕspec −R+ sin 2ϕspec R× cos 2ϕspec cosψ


· sr

spec dωi,
(28)

where ϕspec is the rotation angle from the reference frame of
Mspec to the camera axis. Similar to the diffuse term, Eq. 28
also needs to be repeated three times with separate specular
coefficients when rendering RGB images.

E.2. Unpolarized version

We introduce the unpolarized version of baek pBRDF [2]
used in the ablation study. The diffuse icam

diff and specular icam
spec

components are as follows:

icam
diff =

∫
Ω

ρ

π
T+
o T

+
i iin cos θi dωi, (29)

icam
spec =

∫
Ω

ks
DGR×

4 cos θo
iin dωi, (30)

where iin is the unpolarized incident light intensity.
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Figure 7. Network architecture. The SIREN layer is directly taken from [10].

F. Implementation Details

F.1. Ray marching algorithm

As briefly mentioned in the main paper, the position of
the interaction point is calculated using a simplified ray
marching algorithm. Given the ray origin ro and the di-
rection rd, we iteratively march the ray to compute the in-
teraction point x using Algo. 1. The number of steps is hard
coded as 100 for both training and inference.

Algorithm 1 Ray Marching Algorithm
1: t← 0
2: for step = 1 to max step do
3: x← ro + t · rd
4: t← t+ fsdf(x)
5: end for
6: x← ro + t · rd
7: return x

F.2. Network architecture

Please refer to Fig. 7 for the architecture of our networks.
We set the dimension of all positional encoding [6] to 6.
We have in total six neural networks. The signed distance

network fsdf is directly taken from VolSDF [12]. The left
networks are modified from NeILF++ [15]. The output di-
mensions for falb, frough, fi, fspec, and fdif are 3, 1, 3, 6, 3,
separately.

F.3. Loss function

Let ˆscam be the GT Stokes vectors, we compute the L1

loss for the re-rendered Stokes vectors scam:

L1 =
1

B

∑
B

| ˆscam − scam|, (31)

where B is the batch size. Following IDR [13], we also
compute a Eikonal regularization:

LEik = Ex(||∇xfsdf(x)|| − 1)2. (32)

The final loss is a linear combination of the above two
losses:

Ltotal = λ1L1 + λEikLEik. (33)

In practice, we set λ1 = 1.0 and λEik = 0.1.

F.4. Training details

Considering that all the pixels from the foreground of
all the training images are trained as one epoch, we trained



the first stage (geometry initialization) for 20 epochs, the
second stage (material and lighting initialization) for 20
epochs, and the third stage (joint optimization) for 60
epochs. The batch size was set to 2,048 and we used Adam
[5] optimizer with a learning rate set to 5e-4 and decayed
exponentially to 5e-5. For the joint optimization stage, We
clipped the gradient norm of the signed distance field net
fsdf with the maximum norm set to 0.1. The number of
samples along a ray is set to 64. The number of sampled
incident rays of each interaction point is 128.

The time cost of training is strongly affected by the ratio
between foreground and background. The average training
time of our dataset is roughly 1 day for the geometry ini-
tialization, 1 day for the material and lighting initialization
stage, and 3 days for the joint optimization stage on a single
Nvidia V-100 GPU.
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