
Supplemental materials: Neural Super-Resolution for Real-time Rendering with
Radiance Demodulation

1. Details of Radiance Demodulation
In this section, we first introduce the specific bidirectional
reflectance distribution function (BRDF) used in the imple-
mentation and then go into detail about the pre-computation
of the material component Fβ . One example of radiance de-
modulation is shown in Figure 1.

Bidirectional Reflectance Distribution Function. We
use Disney physically-based material model [7] as our bidi-
rectional reflectance distribution function (BRDF), which is
widely used nowadays. And we can split the BRDF into dif-
fuse and specular terms in real-time rendering. The formula
is as follows:

ρ(ωi, ωo) = ρdiff(ωi, ωo) + ρspec(ωi, ωo), (1)

where ωi and ωo represent the incoming direction and out-
coming direction, respectively. ρdiff and ρspec represent the
diffuse term and specular term of the BRDF.

For the diffuse term, we directly use the Lambertian
model, the formula is as follows:

ρdiff(ωi, ωo) = kd
c

π
, (2)

= (1−m)
c

π
, (3)

where kd represents the diffuse ratio which can be calcu-
lated by metallic value m, and c is the albedo of the object.

For the specular term, we use the Cook-Torrance [4] mi-
crofacet specular shading model. The general formula is as
follows:

ρspec(ωi, ωo) =
D(ωh)F (ωo, ωh)G(ωi, ωo)

4(ωo · ωh)(ωi · ωh)
, (4)

where ωh represents the half vector between ωi and
ωo. D(ωh) is the normal distribution function (NDF),
F (ωo, ωh) is the Fresnel term and G(ωi, ωo) is the
shadowing-masking function.

We use the GGX/Trowbridge-Reitz model [17] as our
normal distribution function:

D(ωh) =
α2

π((ωn · ωh)2(α2 − 1) + 1)2
, (5)

where α and ωn represent the roughness and normal of
the object surface, respectively.

For the Fresnel term, we use Schlick’s approxima-
tion [15]:

F (ωo, ωh) = F0 + (1− F0)(1− (ωo · ωh)) (6)

and
F0 = lerp(0.04, c,m), (7)

where F0 is the specular reflectance at normal incidence,
which can be obtained by linear interpolation using the
metallic value m from plastic Fresnel coefficient (0.04) to
albedo c.

Finally, we use Smith method [19] and Schlick
model [15] to formulate our shadowing-masking function:

G(ωi, ωo) = G1(ωi)G1(ωo), (8)

where

G1(ωo) =
ωn · ωo

(ωn · ωo)(1− k) + k
, (9)

k =
(α+ 1)2

8
. (10)

Pre-computation. Following Zhuang et al. [24] and the
equation 1, the material components Fβ in the radiance de-
modulation module can be rewritten as

Fβ(ωo) =

∫
ρ(ωi, ωo) cos θidωi, (11)

=

∫
ρdiff(ωi, ωo) cos θidωi

+

∫
ρspec(ωi, ωo) cos θidωi, (12)

where θi is the angle between the incoming direction and
the shading normal. We split the integral into two terms,
the diffuse term and the specular term.

The integral of the diffuse term can be calculated di-
rectly: ∫

ρdiff(ωi, ωo) cos θidωi = kdc, (13)

= (1−m)c. (14)
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Figure 1. Visualization of the material component, lighting com-
ponent and the radiance image. The texture details are shown
on the material component, and the lighting component is much
smoother than the radiance.

Because the integral of the specular term is angular-
dependent, we need to pre-compute this part to convert it
into a simple function. However, if we directly pre-compute
the entire integral, we need to store many parameters. In-
spired by Karis et al. [7], we extract F0 out of the Fresnel
term and convert the integral into a simple linear function.
After a series of derivations, the integral of the specular term
can be converted to the following form:

∫
ρspec(ωi, ωo) cos θidωi = F0A+B, (15)

where

A =

∫
ρspec(ωi, ωo)

F (ωo, ωh)
(1− Fc) cos θidωi, (16)

B =

∫
ρspec(ωi, ωo)

F (ωo, ωh)
Fc cos θidωi, (17)

Fc = (1− (ωo · ωh))
5. (18)

The two resulting integrals represent a scale (denoted by
A) and a bias (denoted by B) to F0, respectively. We per-
form importance sampling on the incident direction vector
ωi, resulting in a 2D lookup table with respect to cos θo and
roughness α. In our implementation, the resolution of the
pre-computation lookup table is 512 × 512 with 1024 sam-
ples per pixel, as shown in Figure 2.

After performing the pre-computation above, we can
avoid complex integral of material component Fβ in real-
time inference. We can directly use the albedo map (c) and
metallic map (m) to obtain the integral value of the diffuse
term. And use the specular map (F0), NoV map (the dot
product of normal and view direction, i.e., cos θo) and the
roughness map (α) to query the pre-computation lookup ta-
ble to get the integral value of the specular term. The result
of adding the two terms is the final material component Fβ .

2. Details of Dual Motion Vector
In order to alleviate the ghosting problem caused by warp-
ing with the traditional motion vector (TMV) due to ob-
ject occlusion in dynamic scenes, Zeng et al. [22] proposed

Figure 2. Pre-computation lookup table. The horizontal axis is
cos θo, and the vertical axis is roughness α. The first and second
channels are the scale (denoted by A) and the bias (denoted by B)
to F0, respectively.
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Figure 3. Illustration of the implementation of dual motion vectors
for occlusions. For a pixel xi that is visible now but was occluded
in the previous frame at y, we find where the occluder y is in the
current frame at z. Then we find xi’s correspondence xO

i−1 in the
previous frame using the relative motion vector from z to xi.
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Figure 4. The structure of our U-shaped reconstruction module.

the dual motion vector (DMV), and its implementation pro-
cess is shown in Figure 3. First, for the visible point xi in
the current frame, find the occluded point y in the previous
frame through back projection, where y − xi is considered
as TMV. In the second step, find the point z in the current
frame through forward projection from point y in the pre-
vious frame. The third step is to get the relative motion
vector from point z to point xi. Finally, use this relative
motion vector to find point xO

i−1 in the previous frame, and
set xO

i−1 − xi as DMV. In our method, we can accurately
obtain the occluded area by subtracting DMV with TMV.



3. Details of Reconstruction Module
In the frame-recurrent super-resolution module, we use the
U-shaped reconstruction module to reconstruct and upsam-
ple the intermediate features to obtain the high-resolution
lighting components. The structure of the U-shaped recon-
struction module is shown in Figure 4. The residual chan-
nel attention blocks (RCAB) [23] in the module have been
widely used in super-resolution due to the ability to improve
reconstruction quality, and we choose the U-shaped struc-
ture to connect them in order to reduce the network compu-
tation as much as possile. We use max-pooling layer for
downsampling, bilinear interpolation for upsampling and
channel-wise connections for preserving the shallow fea-
tures. Finally, the pixel-shuffle operation [16] is used for
upsampling reconstruction.

4. Experiments
4.1. Datasets

We use the Unity [18] rendering engine to generate our
dataset. We select seven representative scenes, namely
Bistro [11], Square [13], San Miguel (San M) [12],
Bar [11], ZeroDay [20], Airplane and Pica. The exam-
ple images are shown in Figure 13. Similar to previous
work [21], we uniformly distribute different fast-moving
cameras in each scene to generate multiple sequences of
100 frames each, containing as different objects and mate-
rials as possible to enhance diversity. We randomly divided
the training, validation and testing datasets from these se-
quences, and the exact number of sequences is shown in
Table 1. We also generate a set of rendering G-buffers as
the additional inputs to the network. An example is shown
in Figure 5.

4.2. Implementation Details

We demodulate the LR radiance into the lighting compo-
nent with the LR and HR material G-buffer generated in
the deferred rendering pipeline, as described in Section 1.
Then, the light component, together with the LR depth, nor-
mal, motion vector, and dual motion vector into the net-
work, is fed into the network.

In our super-resolution neural network, we set the con-
volutional output channel number as 32 in the radiance de-
modulation and reliable warping modules. The convolu-
tional output channel number in the frame-recurrent recon-
struction module is set as 64 (except for the last channel
number is 3 × s × s for the pixel-shuffle operation, where s
is the SR factor). The breakdown of our network is shown
in Table 2.

The output of the network – the reconstructed HR light
component, is modulated with the HR material component
to form the current output frame and aids the reconstruction
for the next frame.

Table 1. The sequence number of training, validation and testing
dataset for each scene. Each sequence contains 100 frames.

Scene
Training

Sequences
Validation
Sequences

Testing
Sequences

Bistro 54 6 12
San M 54 6 6
Square 42 6 6
Bar 45 3 6
ZeroDay 24 3 3
Pica 30 3 3
Airplane 24 3 3

Table 2. The parameters and GFLOPs of each module.

Params (K) GFLOPs
Radiance Demodulation 2.05 0.26

Reliable Warping 9.34 1.20

Frame-Recurrent
Reconstruction

First conv 13.86 1.79
ConvLSTM 442.62 57.33
Ushaped-Net 1142.92 84.78

Total 1610.79 145.36

Table 3. Comparison among our method, DLSS 2.0 and FSR 2.0
on the Bistro scene. The SR factor is set as 2×2.

PSNR(dB) SSIM LPIPS ↓
DLSS 2.0 28.35 0.9104 0.136
FSR 2.0 28.90 0.9117 0.137
Ours 30.11 0.9405 0.080

Table 4. Comparison between our method and EDSR with four
error measurements on the Bistro scene. The SR factor is set as
4×4.

PSNR(dB) SSIM LPIPS ↓ VMAF
EDSR 24.08 0.7625 0.327 33.25
Ours 26.43 0.8739 0.141 53.82

Table 5. Reconstruction quality versus the SR factor on the Bistro
scene with the target resolution set as 1920 × 1080. The metrics
are averaged over all test data (1200 frames).

SR factor 2 × 2 4 × 4 6 × 6

PSNR 30.11 26.43 25.18
SSIM 0.9405 0.8739 0.8349

4.3. More Comparison Results

We provide additional qualitative comparisons of the results
on seven scenes, as shown in Figure 10 and Figure 11. From
the results, our method not only produces results with richer
texture details (Bistro Scene) but also recovers the view-
dependent highlights (ZeroDay scene) well. It can also be
seen from the Pica scene that our method successfully elim-



inates the obvious ghosting problem in NSRR [21]. Further-
more, as can be seen from the video in the supplementary
material, our method has better temporal stability compared
to other methods.

We adopt the epipolar plane image (EPI) [1] to evaluate
the temporal consistency visually by plotting the transition
of the dotted red horizontal scanlines over time, as shown
in Figure 12. By comparison, our results look sharper and
are the closest to the ground truth, while the other methods
exhibit blurred results and flickering artifacts, demonstrat-
ing that our method is more temporal consistent than other
methods.

The quantitative comparison results among our method,
DLSS 2.0 [5] and FSR 2.0 [6] are shown in Table 3. Our
method outperforms the other two methods.

4.4. Comparison of Generalization Ability

We have compared the generalization results of
FRVSR [14], TecoGAN [3] and NSRR [21] quantita-
tively in the main paper, and we also provide a comparison
of qualitative results in Figure 9. It can be seen from
the results that other methods cause excessive blurring of
details. Although TecoGAN can get a slightly sharp result,
it is still quite different from GT. However, our method can
still preserve complex texture details, which proves that our
method has generalization ability.

4.5. Varying SR Factors Results

Table 5 and Figure 8 show the quantitative and qualitative
reconstruction results under different SR factors, respec-
tively. We keep the target resolution (1920 × 1080) the
same and modify the input image resolution according to
the SR factors. As the SR factor increases, the error be-
comes larger, since the SR reconstruction becomes more
difficult. Our method can still preserve rich texture details
thanks to the radiance demodulation module.

4.6. Comparison with SISR Method

We compare our method with a SISR method, i.e.,
EDSR [9], in Table 4 and Figure 6. Our method shows
higher quality than EDSR on all metrics, and the details are
better preserved. Furthermore, EDSR leads to poor tempo-
ral stability, as demonstrated in the video, since they do not
consider the consistency between consecutive frames.

4.7. Limitations

Although our method produces high-fidelity results in most
scenarios, we have still identified some limitations, in-
cluding complex indirect reflections and moving shadows,
which are known to be challenging, as shown in Figure 7.
These high-frequency effects are due to the lighting rather
than the material component. Therefore, our method shows
subtle benefits.

Figure 5. Additional network inputs of the Pica scene.

Figure 6. Comparison with EDSR on the Bistro scene. The target
resolution is set as 1920 × 1080 and the SR factor is set as 4 × 4.

Ours GT

Ours GT

LR

LR

Figure 7. Failure cases on high-frequency indirect reflections and
shadow boundaries.
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