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A. Evaluation Details
Prompts We generate images with two prompt sets for evaluation: 1) 4081 prompts from TIFA [19] benchmark. The
benchmark contains questions about 4,550 distinct elements in 12 categories, including object, animal/human, attribute,
activity, spatial, location, color, counting, food, material, shape, and other. 2) randomly sampled 10K prompts from
MSCOCO [26] 2014 validation set.

Metrics In addition to previously introduced TIFA [19] and ImageReward [40] scores, we also calculate the following
metrics:
• FID: FID measures the fidelity or similarity of the generated images to the groundtruth images. The score is calculated based

on the MSCOCO-10K prompts and their corresponding images. We resize the groundtruth images to the same resolution
(256⇥256 or 512⇥512) as the generated images.

• CLIP: The CLIP score [14, 32] measures how the generated image aligns with the prompt. Specifically, the cosine similarity
between the CLIP embeddings of the prompt and the generated image. Here we calculate it with the MSCOCO-10K prompts
and report the average value.

• Human Preference Score (HPS) [39]: HPSv2 is a preference prediction model trained with human preference. We calculate
the scores based on the TIFA prompts and report the average value.

Inference Settings Given a prompt set and a pre-trained model, we generate images at 256⇥256 resolution with DDIM [37]
50 steps, using default CFG 7.5 and fixed seed for all prompts. For each model checkpoint, we use its non-EMA weights for
evaluation.

B. More Results on UNet Scaling

Figure 12. The evolution of all metrics during training for UNet variants. The baseline models are the UNets of SD2 and SDXL. All models
are trained with SDXL VAE at 256⇥256 resolution. The 1st row shows SDXL UNets with different initial channels. The 2nd row shows
SDXL UNets with different TDs. The 3rd row compares SDXL UNets with both increased channels and TDs.



Evolution of all metrics for UNet variants We have shown the TIFA evolution curves of SDXL [31] UNet variants in Sec. 3.
Here we show the evolution of other metrics during training for all UNet variants in Fig. 12, including the change of channels,
transformer depth and both of them. The pattern of other metrics is very similar as TIFA and the relative performance among
models is stable across metrics, e.g., the 1st row of Fig. 12 shows that UNets with more channels tend to have better TIFA,
HPSv2, ImageReward, CLIP, and FID scores. Though FID score has more variations during training.

Comparing the training efficiency of SDXL UNet and its variant Previously we introduce a smaller SDXL UNet variant,
i.e., TD4_4, which is 45% smaller, 28% faster, and has competitive performance as SDXL-UNet when trained with the same
steps (Fig. 12). Here we compare their metrics in terms of training steps as well as the total compute (GFLOPs). We extend
the training steps of TD4_4 from 600K to 850K to see whether the performance can be further improved. As shown in Fig. 13,
TD4_4 achieves similar or better metrics in comparison with SDXL UNet with much less computation cost. It suggests that
TD4_4 is a more compute efficient model when the training budget is limited.

Figure 13. Comparing metrics evolution speed of SDXL UNet and its TD4_4 variant in terms of training steps and total compute (GFLOPs).
TD4_4 achieves similar or better metric scores at much less training cost.

C. More Results on Dataset Scaling
Evolution of all metrics for SD2-UNet trained on different datasets We have shown the TIFA and ImageReward evolution
curves of SD2-UNet trained on different datasets in Sec. 4. Here we show the evolution of all metrics in Fig. 14. The trend of
other metrics is similar as TIFA, except the HPSv2 and CLIP scores for LensArt-Raw, which have higher values than LensArt.
We find the reason is that the LensArt-Raw model tend to generate images with more meme text due to a large amount of data
has such patterns, and such images usually results in higher values on those two metrics. Those metrics become more precise
and meaningful after the training data is filtered by removing those meme images.

Figure 14. Training SD2 model with different datasets. All metrics show that LensArt + SSTK has better scores than LensArt or SSTK only.
Note that the HPSv2 and CLIP scores for LensArt-Raw are much higher than LensArt. The reason is that unfiltered dataset tends to generate
images with more meme text.

D. The Effect of VAE Improvement
SDXL [31] introduced a better trained VAE and shows improved reconstruction metrics in comparison with its SD2 version.
However, the impacts on the evaluation metrics are not fully explored. Here we ablate the effect of VAE on the evaluation



metrics. We compare the training of same SD2-UNet with different VAEs, i.e., SD2’s VAE and SDXL’s VAE, while keeping
all other settings the same. Fig. 15 shows that the improvement of SDXL’s VAE over SD2’s VAE is significant for all metrics.

Figure 15. Training SD2 UNet model with different VAEs. The SDXL’s VAE has significant improvement on all metrics over SD2’s VAE.

E. Scaling the Batch Size
To scale out the training of large diffusion models with more machines, increasing batch size is usually an effective approach.
We have been using consistent batch size 2048 in all experiments for controlled studies. Here we also show the effect of batch
size on the evolution of metrics. We compare the training of SDXL UNet with 128 channels in different batch sizes, i.e., 2048
and 4096, while keeping other training configs the same. Fig. 16 shows that larger batch size yields better metrics in terms of
same iteration numbers. The convergence curve of FID score is more smooth than smaller batch size.

Figure 16. Training SDXL-UNet-C128 with different batch sizes.

F. Model Evaluation at Low Resolution Training
The evaluation metrics at 256 resolution can provide early signals on their performance at high resolutions, which is informative
for quick model ablation and selection. The reason is that the high resolution training usually utilizes a subset of images of
the dataset, and the text-image alignment and image quality scores usually do not change significantly once they are fully
trained at lower resolution, especially the text-image alignment performance. Given two well trained SDXL models (C128 and
C192) at 256 resolution, which has clear performance gap, we continue training them at 512 resolution and measure their
performance gap. As shown in Fig. 17, both two SDXL UNet models can get performance improvement at 512 resolution, but
C128 model still yields worse performance than C192.

Figure 17. TIFA and ImageReward do not change much during high resolution fine-tuning stage (dashed lines)



G. Caption Analysis
For both LensArt and SSTK dataset, we present the histograms of number of words and nouns of original and synthetic
captions respectively in Fig. 18. Note that we overload the noun with noun and proper noun combined for simplicity. First, as
shown in the first two figures, we see that synthetic captions are longer than original captions in terms of words, indicating
augmenting original captions with synthetic captions can increase the supervision per image. Second, from the last two figures,
we note that the number of nouns of synthetic captions are less than those in real captions on average. This is mainly caused
by synthetic captions have less coverage in proper nouns, indicting the synthetic captions alone are not sufficient to train a
generalist text-to-image model.

Figure 18. Histograms of word and noun numbers in the original and synthetic captions of different datasets
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