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1. Experimental Settings
Dataset. We evaluate the performance of our method on 15
recognition datasets. For generalization from base-to-novel
classes and cross-dataset evaluation, we evaluate the per-
formance of our method on 11 diverse recognition datasets.
Specifically, these datasets include ImageNet-1K [4] and
Caltech101 [5] for generic object classification; Oxford-
Pets [16], StanfordCars [12], Flowers102 [15], Food101 [1],
and FGVCAircraft [14] for fine-grained classification,
SUN397 [24] for scene recognition, UCF101 [22] for ac-
tion recognition, DTD [3] for texture classification, and Eu-
roSAT [6] for satellite imagery recognition. For domain
generalization experiments, we use ImageNet-1K as the
source dataset and its four variants as target datasets includ-
ing ImageNet-V2 [17], ImageNet-Sketch [23], ImageNet-
A [8], and ImageNet-R [7].
Training Details. For PromptKD, we follow the same set-
tings as PromptSRC, setting the prompt depth to 9 and
the vision and language prompt lengths to 4. We use the
stochastic gradient descents (SGD) as the optimizer. All
student models are trained for 20 epochs with a batch size
of 8 and a learning rate of 0.005. We follow the standard
data augmentation scheme as in PromptSRC, i.e., random
resized cropping and random flipping. The temperature hy-
perparameter τ in the current distillation method is default
set to 1. The text prompts of the first layer are initialized
with the word embeddings of “a photo of a {classname}”.
We conduct all experiments on a single Nvidia A100 GPU.
Training Data Usage. In the initial stage of our method, we
employ PromptSRC to pre-train our ViT-L/14 CLIP teacher
model. During this stage, we utilize the same training
data as PromptSRC for the training process. In the sub-
sequent stage, we adopt the transductive zero-shot learning
paradigm and employ the entire training dataset to train our
student model. In Table 1, we provide the details of the
number of images used for training on the base-to-novel
generalization setting.

2. Additional Experiments
Domain Generalization. In our PromptKD, the teacher
model is first pre-trained using PromptSRC [11] on the
source dataset (i.e., ImageNet). Then we train student mod-
els using unlabeled target datasets and then evaluate their
performance after training.

In Table 2, we present the results of PromptKD and other
state-of-the-art methods (i.e., CoOp [26], CoCoOp [25],
MaPLe [10], PromptSRC [11], TPT [21], PromptAl-
ign [18]) on four different datasets. On the target dataset,

Dataset Train Test Base Test Novel

ImageNet 1,281,167 25,000 25,000
Caltech101 4,128 1,549 916
OxfordPets 2,944 1,881 1,788

StandfordCars 6,509 4,002 4,039
Flowers102 4,093 1,053 1,410

Food101 50,500 15,300 15,000
FGVCAircraft 3,334 1,666 1,667

SUN397 15,880 9,950 9,900
DTD 2,820 864 828

EuroSAT 13,500 4,200 3,900
UCF101 7,639 1,934 1,849

Table 1. Number of images used for distillation and testing per
dataset.

Target Dataset
ZSL ViT-B/16 -V2 -S -A -R Avg.

CLIP 60.83 46.15 47.77 73.96 57.18
CoOp 64.20 47.99 49.71 75.21 59.28

In- CoCoOp 64.07 48.75 50.63 76.18 59.91
ductive MaPLe 64.07 49.15 50.90 76.98 60.27

PromptSRC 64.35 49.55 50.90 77.80 60.65

TPT 63.45 47.94 54.77 77.06 60.81
CoOp+TPT 66.83 49.29 57.95 77.27 62.83

Trans- CoCoOp+TPT 64.85 48.47 58.47 78.65 62.61
ductive PromptAlign 65.29 50.23 59.37 79.33 63.55

PromptKD 69.77 58.72 70.36 87.01 71.47
∆ +4.48 +8.49 +10.99 +7.68 +7.92

Table 2. Comparison of PromptKD with existing advanced ap-
proaches on domain generalization setting. Based on our pipeline,
we perform unsupervised prompt distillation using the unlabeled
domain data respectively (i.e., the transductive setting). The
source model is training from ImageNet [4]. “ZSL” denotes the
setting type for Zero-Shot Learning. PromptKD achieves consis-
tent improvement on all target datasets.

our method shows a clear performance advantage compared
to other methods.
Teacher Accuracy. In Table 3 and Table 4, we present the
pre-trained ViT-L/14 based CLIP teacher model accuracy
on the base-to-novel and cross dataset experiments.
Layer of Projector. Table 5 presents the distillation perfor-
mance of different MLP layers used in the projector. The
results show that two layers of MLP are effective enough to
achieve feature alignment. More or fewer MLP layers will
cause over-fitting or under-fitting problems in training.
Distillation with Different Students. To verify the effec-
tiveness of PromtpKD on student models with different ca-
pacities, as shown in Table 6, we further conduct experi-
ments on the CLIP models with ViT-B/32 image encoder.



Dataset Base Novel HM

ImageNet 83.24 76.83 79.91
Caltech101 98.71 98.03 98.37
OxfordPets 96.86 98.82 97.83

StandfordCars 84.53 84.25 84.39
Flowers102 99.05 82.60 90.08

Food101 94.56 95.15 94.85
FGVCAircraft 54.44 43.07 48.09

SUN397 84.97 81.09 82.98
DTD 85.76 70.65 77.48

EuroSAT 94.79 83.15 88.59
UCF101 89.50 82.26 85.73

Table 3. Pre-trained ViT-L/14 CLIP teacher accuracy on base-to-
novel generalization experiments.

ViT-L/14 Dataset Accuracy

Source ImageNet 78.12

Target

Caltech101 95.61
OxfordPets 94.19

StandfordCars 84.53
Flowers102 99.05

Food101 94.56
FGVCAircraft 54.44

SUN397 84.97
DTD 85.76

EuroSAT 94.79
UCF101 89.50

Table 4. Pre-trained ViT-L/14 CLIP teacher accuracy on cross-
dataset generalization experiments.

MLP Layer Base Novel HM

1 78.97 72.90 75.81
2 79.27 73.39 76.22
3 79.10 72.72 75.78

Table 5. Number of Projector layers. 2-layer MLP works best.

Role Img Backbone Base Novel HM

Teacher ViT-L/14 83.24 76.83 79.91

Baseline
ViT-B/32

67.52 64.04 65.73
Student 74.29 69.29 71.70

∆ +6.77 +5.25 +5.97

Baseline
ViT-B/16

72.43 68.14 70.22
Student 80.83 74.66 77.62

∆ +8.40 +6.52 +7.40

Table 6. Prompt distillation with different student CLIP models.
∆ denotes the performance improvement compared to the baseline
result. Student models of different capacities achieved consistent
improvements.

The results show that the student models achieve consistent
improvements through the PromptKD method.
Temperature Hyperparameter. The temperature parame-
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Figure 1. Choice of temperature hyperparameter. The best perfor-
mance is achieved when τ=1.

ter controls the softness of probability distribution [9] and
the learning difficulty of the distillation process [13]. In tra-
ditional distillation approaches, a common practice is to set
the temperature parameter τ to 4 for most teacher-student
pairs and datasets. In Fig. 1, we evaluate the impact of dif-
ferent temperature values on our proposed prompt distilla-
tion method. The results indicate that the traditional tem-
perature setting of τ=4 is not suitable for our current task.
Increasing the temperature value leads to a rapid decrease
in model performance. Interestingly, the best performance
is achieved when τ=1.
Distillation with Longer Schedules. In PromptKD, for
fair comparison, we adopt the same training schedule as
PromptSRC, which is 20 epochs. In this part, we examine
whether the student model can benefit from longer training
schedules. As shown in Table 7, we conduct experiments
using 20, 40, and 60 training epochs respectively. The re-
sults show that the longer the training time, the higher the
student performance.

Train Epoch Base Novel HM

20 79.27 73.39 76.22

40 79.75 73.65 76.58
60 79.89 73.68 76.66

Table 7. Distillation with longer schedules. The longer the training
time, the higher the student performance.

3. Discussion
Experimental results of full fine-tune. In Table 5 of the
main paper, we notice that the results of the full fine-tune
method are lower than that of other distillation methods
by a large margin (>2%). There are two reasons for this.
The first one is due to the limited size of the dataset we
used in training. It is much smaller than the CC3M [20],
CC12M [2], or LAION-400M [19] datasets commonly used
to train CLIP. The second reason is that the training time is
short. To align with other experimental settings, we only



train the student model for 20 epochs. In total, the full fine-
tuning method will improve if larger data sets are used and
longer training schedules are adopted.
Distillation with bad teachers. In Figure 5 of the main pa-
per, when a weaker teacher (ViT-B/32) is chosen compared
to the student (ViT-B/16), the student trained using Promp-
tKD demonstrates superior performance compared to the
baseline method (71.87%>70.22%). This situation differs
from traditional distillation methods, where poor teachers
often lead to a significant decline in student performance.
The distinction arises due to the prompt learning method’s
focus on training only learnable prompts while keeping the
original CLIP model weights frozen. The frozen CLIP
model remains influential in the prediction process, where
the trained prompts do not substantially bias the model in-
ference.
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