
QDFormer: Towards Robust Audiovisual Segmentation in Complex
Environments with Quantization-based Semantic Decomposition

Xiang Li1*, Jinglu Wang2, Xiaohao Xu3, Xiulian Peng2, Rita Singh1, Yan Lu2, Bhiksha Raj1
1 CMU, 2 Microsoft Research Asia, 3 UMich

A. More Experiments

Pvt-v2 [5] Object-M Sementic
J&F mIoU

AVSBench [6] 59.3 29.8
AVSegFormer [1] 63.8 42.0

CATR [3] 64.5 32.8
Ours 65.8 54.5

Table A. Performance with larger backbone.

Larger backbone. We demonstrate the performance on
AVSBench test set with Pvt-v2 [5] backbone as shown in
Tab. A. We notice that our method consistently outperforms
previous baselines CATR [3] and AVSegFormer [1] on both
AVS-Object-Multi and AVS-Semantic datasets.

frame number Object-M Sementic
J&F mIoU

3 60.9 45.4
5 61.6 46.6
7 - 46.6

Table B. Ablation on the input frame number.

Frame number. We ablate the influence of input frame
number during training. As shown in Tab. B, we notice a
frame number of five achieves the best performance. For the
AVS-Object dataset, since the maximum clip length is five,
we do not experiment with larger frame number. Please note
that the frame number is only fixed during training and the
model can accept arbitrary frame numbers during inference.
Transformer decoder layer number. We conduct an ab-
lation study on transformer decoder layer numbers in se-
mantic decoders. As shown in Tab. C, a transformer de-
coder layer of 3 achieves the best performance. We notice
that even a single-layer transformer decoder for semantic
decomposition can lead to a good performance.

*This work was done when Xiang Li and Xiaohao Xu were interns at
Microsoft.

layer number Object-M Sementic
J&F mIoU

1 61.3 45.6
3 61.6 46.6
5 61.0 46.0

Table C. Ablation on transformer decoder layer number.

frame resolution Sementic
mIoU

224× 46.6
640× 49.2

Table D. Ablation on input frame resolution.

Input Resolution. The default setting of AVSBench is
224 × 224 (following the sound source localization con-
vention) for both AVS-Object and AVS-Semantic datasets.
While AVS-Semantic actually provides high-resolution
(720p) frames. We conduct experiments to ablate the input
resolution to facilitate future comparison. Following the se-
mantic segmentation convention, we scale the input frames
to the longest side 224 or 640. The results are illustrated in
Tab. D. We only conduct ablation on AVS-Semantic since
the resolution of AVS-Object is low-resolution (224×224).
The results are reported with the ResNet-50 backbone.

Token Object-M Sementic
Number J&F ↑ mIoU↑

1 59.7 40.2
3 61.0 43.5
5 61.6 46.6
7 61.6 45.9
9 61.2 46.3

Table E. Ablation on decomposed token number.

Ablation on semantic token number. We ablate the se-
mantic token number for the global-ASD and local-ASD in
Tab. E. We observe that a token number of 5 yielded the best
performance. This can be attributed to the fact that the max-
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imum number of mixed sound sources for the audio-visual
dataset is 5.

Codebook Object-M Sementic
Size J&F ↑ mIoU↑

1 52.7 24.8
32 61.4 31.5
64 60.0 43.2

128 61.6 46.6
256 60.6 46.1

Table F. Ablation on codebook size.

Ablation on codebook size. The cardinality of the code-
book is essential to our semantic decomposition. Ideally,
we aim to constrain the cardinality of the codebook to be
close to the semantic category number. We ablate on code-
book size from 1 to 256. When the codebook size equals
1, all the decomposed audio tokens are the same, resulting
in all the same segmentation results. As shown in Tab. F,
we notice even a codebook size of 1 achieves 24.8 mIoU
on AVS-Semantic. A codebook of size=128 achieves the
best performance. Please note that a codebook size slightly
larger than the category number, e.g.128, will not hamper
the semantic decomposition capability of our method, since
128 ≪ 70N where N > 1 is the maximum sound source
number, and 70 is the category number.

Importance of the single-source audio on the semantic
decomposition of multi-source audio representation.

We present empirical evidence that the single-source au-
dio samples significantly contribute to the success of se-
mantic decomposition. To demonstrate this, we compare
the performance of our model trained on two training sets
with the same number of samples: one contains solely
multi-source audio samples, and the other contains single-
and multi-source audio samples with a ratio of 1:1. As il-
lustrated in Fig. B, the model trained solely on multi-source
audio samples exhibits inferior performance compared to
the model trained on both types of samples, regardless of
the token number and codebook size. We conjecture that the
single-source samples serve as informative anchors that as-
sist the model in learning the correct distributions of the de-
composed simplex spaces for multi-source samples. In the
absence of single-source samples, the decomposition task
could be more difficult due to the absence of such informa-
tive anchors.
Per-class IOU analysis. As is shown in Fig. A, we show
the per-class iou score on the AVS-Semantic dataset. Our
model demonstrates strong audio-guided segmentation ca-
pabilities for common head classes such as ’background’,
’train’, ’airplane’, ’hair-dryer’ and ’clock’. These classes
are accurately segmented with a high level of precision and
reliability. The model effectively distinguishes the ’back-

ground’ class, providing a solid foundation for identifying
and isolating foreground objects. It accurately segments
transportation-related classes like ’train’, ’airplane’, and
’bus’ capturing their intricate details and boundaries. Simi-
larly, it excels in segmenting objects such as ’hair-dryer’,
’clock’ and ’tabla,’ effectively separating them from the
background. Even for more complex and nuanced classes
like ’wolf,’ our model demonstrates commendable segmen-
tation performance, accurately delineating the contours and
shape of the subject. Overall, our model showcases its abil-
ity to segment these common head classes with high accu-
racy and proficiency, making it a reliable choice for various
segmentation tasks.

However, the scarcity of data samples for tail classes
like ’utv’, ’parrot’, ’missile-rocket’, ’harmonica’, ’clipper’,
’boy’ and ’ax’ in the presence of a long tail distribution can
significantly impact the performance of our model, specifi-
cally in the task of segmentation. With limited examples to
learn from, the model finds it challenging to capture the in-
tricate patterns and unique characteristics associated with
these classes. Consequently, the accuracy and reliability
of segmentation results for the tail classes may be com-
promised, leading to suboptimal performance in accurately
identifying and delineating these objects or entities of inter-
est.

B. More Visualization & Video Demo
More qualitative results on AVS-Object. In our study,
we provide visualizations of the qualitative results on AVS-
Object, as shown in Fig. C. We compare our method with
the approach proposed by Zhou et al. [7] and observe a no-
table difference in performance. Specifically, in the third
frame of the video clip, the method proposed by Zhou et
al. suffers from the false-positive problem, incorrectly seg-
menting objects. In contrast, our method consistently and
accurately segments the correct objects throughout the en-
tire video clip, demonstrating superior performance. Ad-
ditionally, our method showcases better mask quality, with
more precise and detailed segmentation boundaries. These
results highlight the effectiveness and robustness of our ap-
proach in achieving accurate object segmentation in audio-
visual scenes.
More qualitative results on AVS-Semantics. As is shown
in Fig. D, Fig. E, Fig. F and Fig. G, our model exhibits ex-
ceptional proficiency in accurately segmenting both multi-
ple and tiny sounding objects, showcasing its versatility and
robustness in audio-guided segmentation tasks. Through
the implementation of a decomposed and discretized audio
representation, our model effectively captures the distinct
acoustic characteristics of various objects, enabling precise
delineation of multiple simultaneous sound sources. Fur-
thermore, the model demonstrates remarkable capability in
capturing the intricate details and nuances of tiny sounding
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Figure A. Per-class IOU Analysis. Our model demonstrates strong audio-guided segmentation capabilities for common head classes,
accurately capturing ’background’, ’train’, ’airplane’, ’hair-dryer’, and ’clock’ with high precision. However, the limited data samples for
tail classes like ’utv’, ’parrot’, ’missile-rocket’, ’harmonica’, ’clipper’, ’boy’, and ’ax’ due to a long tail distribution adversely affect the
model’s segmentation performance, hindering accurate identification and delineation of these classes.

Figure B. Comparison of training w. and w./o. single-source data.

objects, ensuring accurate segmentation outcomes even for
the smallest entities.
Video demo (with audio). We strongly recommend view-
ing the demo video provided in the supplementary materi-
als, ensuring that you enable audio playback. Watching the

video with audio will provide a comprehensive understand-
ing of our audio-visual segmentation application, showcas-
ing how our model utilizes a decomposed and discretized
representation to achieve precise audio-visual segmentation
results.

C. More Implementation Details
We set the λcls = 2, λL1 = 5, λgiou = 2, λdice = 2,
λfocal = 5, λcom = 0.5 and λquant = 1 during all training
process. A mask confidence threshold of 0.5 and a class
confidence threshold of 0.1 is leveraged to filter out low-
confident predictions. Cv = Ce = Cq = 256 is utilized.
The positional embedding added in the transformers is the
standard triangle positional embedding used in [4]. We set
the layer number to three for all the transformers decoders
(including local ASD, global ASD and TrDsegm in mask
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Figure C. Qualitative comparison to Zhou et al. [7] on AVS-Object. Our method outperforms Zhou et al.’s approach by consistently and
accurately segmenting the correct objects throughout the entire video clip, showcasing superior performance and better mask quality. These
results emphasize the effectiveness and robustness of our approach in achieving accurate object segmentation in audio-visual scenes.

decoder).

C.1. Encoders

Visual encoder. We extract frame-level visual features
from each frame It with a shared backbone. The T ex-
tracted features are then fed into the deformable transformer
encoder to further conduct temporal aggregation. Let us de-
note the extracted visual features as Fv = {ft}Tt=1, where
ft ∈ RCv×H×W , and Cv , H , W denote the channel, height,
width of the feature.
Acoustic encoder. We use VGGish [2] to extract audio fea-
tures. Let the extracted audio feature be Fa ∈ RCa×La

where Ca is the dimension of acoustic feature space, and La

is the audio clip length. Note that audio and video frames
are already synchronized, thus the length of the audio clip
is the same as the length of the video clip.

D. More details about inference
To tackle scenarios where queried content keeps changing,
we perform per-frame inference. For each time t, we assign

a class to the pixel at [h,w] by

arg max
C∈{1,··· ,K}

N∑
i=1

Pi,t[C]Mi,t[h,w], (1)

where Pi,t[C] is the probability of class C. Note that
argmax does not include the “empty” category (∅) as AVS
requires each output pixel to belong to one semantic cate-
gory.
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Figure D. Qualitative comparison to Zhou et al. [7] on AVS-Semantic. Each color represents a semantic category. Our model excels in
accurately segmenting multiple sounding objects, showcasing its proficiency in audio-guided segmentation. This success can be attributed
to the effective utilization of a decomposed and discretized audio representation, which enables the model to capture and analyze the distinct
acoustic features of each object, resulting in precise segmentation outcomes.
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Figure E. Qualitative comparison to Zhou et al. [7] on AVS-Semantic. Each color represents a semantic category. Our model excels in
accurately segmenting multiple sounding objects, showcasing its proficiency in audio-guided segmentation. This success can be attributed
to the effective utilization of a decomposed and discretized audio representation, which enables the model to capture and analyze the distinct
acoustic features of each object, resulting in precise segmentation outcomes.
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Figure F. Qualitative comparison to Zhou et al. [7] on AVS-Semantic. Each color represents a semantic category. Our model excels in
accurately segmenting multiple sounding objects, showcasing its proficiency in audio-guided segmentation. This success can be attributed
to the effective utilization of a decomposed and discretized audio representation, which enables the model to capture and analyze the distinct
acoustic features of each object, resulting in precise segmentation outcomes.
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Figure G. Qualitative comparison to Zhou et al. [7] on AVS-Semantic. Each color represents a semantic category. Our model demonstrates
remarkable proficiency in accurately segmenting tiny sounding objects, owing to the implementation of a decomposed and discretized
audio representation. By leveraging this technique, our model effectively captures the intricate acoustic details and nuances of these small-
sized objects, resulting in precise and reliable segmentation outcomes.
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